POINT SET TOPOLOGY

Definition 1 A topological structure on a set X is a family O C P(X)
called open sets and satisfying

(O1) O is closed for arbitrary unions

(O2) O is closed for finite intersections.

Definition 2 A set with a topological structure is a topological space (X, O)

Up = Uiep s = {x : x € E;for some i € 0} =)

so () is always open by (Oy)

Ny =NicpE; ={x:x € Eforallie P} =X
so X is always open by (O3).

Examples (i) O = P(X) the discrete topology.
(ii) O{0, X} the indiscrete of trivial topology.
These coincide when X has one point.
(iii) Q=the rational line.
O=set of unions of open rational intervals
Definition 3 Topological spaces X and X’ are homomorphic if there is an

isomorphism of their topological structures i.e. if there is a bijection
(1-1 onto map) of X and X’ which generates a bijection of O and O.

e.g. If X and X are discrete spaces a bijection is a homomorphism.
(see also Kelley p102 H).

Definition 4 A base for a topological structure is a family B C O such that
every o € O can be expressed as a union of sets of B

Examples (i) for the discrete topological structure {z},cx is a base.
(ii) for the indiscrete topological structure {(), X} is a base.

(iii) For Q, topologised as before, the set of bounded open intervals is
a base.



(iv) Let X ={0,1,2}
Let B = {(0,1),(1,2),(0,12)}. Is this a base for some topology
on X7 i.e. Do unions of members of X satisfy (O3)?

(0,1)N(1,2) = (1)- which is not a union of members of B, so B is
not a base for any topology on X.

Theorem 1 A necessary and sufficient condition for B to be a base for a
topology on X = U,epo is that for each O' and O” € B and each
x € 0'NO"30 € B such that x € O C O'NO".

Proof Necessary: If B is a base for O, O'NO" € O and if z € O'NO”, since
O'N 0" is a union of sets of B 3O € B such that x € O C O'N O".
Sufficient: let O be the family of unions of sets of B.

(Oy) is clearly satisfied.

(O2) (UA;) N (UBj) = U(A; N By) so that it is sufficient to prove that
the intersection of two sets of B is a union of sets of B.

Let z € O'NO". Then 30x € B such that x € O x € O’ N O” so that
o'no’= Uer/ﬂO"Ox-

Theorem 2 If S is a non-empty family of sets the family B of their finite
intersections is a base for a topology on Ug

Proof Immediate verification of O; and Oy. The topology generated in this
way is the smallest topology including all the sets of S.

Definition 4 A family S is a sub base for a topology if the set of finite
intersections is a base for the topology.
e.g. {aco}aeq and {(—o00 a)}aeq are sub bases for Q

Definition 5 If a topology has a countable base it satisfies the second axiom
of countability.

Definition 6 In a topological space a neighbourhood of a set A is a set
which contains an open set containing A. A neighbourhood of a point
X is a neighbourhood of {z}.

Theorem 3 A necessary and sufficient condition that a set be open is that
it contains (is) a neighbourhood of each of its points.

Proof Necessary: Definition of a neighbourhood

Sufficient: Let O4 = U open subsets of A. O 4 is open (O;) and O4 C A.



If x € A A D a neighbourhood of z D open set 5 z therefore x € O4
therefore A C Oy.

Let V(x) denote the family of neighbourhoods of x. Then V(z) has
the following properties.

(V1) Every subset of X which contains a member of V' (z) is a member

of V(x)
(Va) V(x) is closed for finite intersections
(V3) « belongs to every member of V (z).

(Vy) If v € V(2)3W € V(x) such that v € V(y) for all y € W.
(Take W to be an open set > z and C V.)

Theorem 4 If for each point x of X there is given a family V(x) of subsets
of X, satisfying V;_4 then 3 a unique topology on X for which the
sets of neighbourhoods of each point x are precisely the given V(x).
(Hausdorff).

Proof If such a topology exists theorem 3 shows that the open sets must be
the O such that for each x € O O € V(z) and so there is at most one
such topology. Consider the set O so defined.

(O1) Suppose x € UO. Then x €some O O' € V(z) O" C |cupO so
uo € V(z).

(O3) Suppose * € Npo = x € each O. each O € V(x) therefore
NrpO € V(ﬂ?) by V5.

Now consider the system U(z) of neighbourhoods of = defined by this
topology.

(i) U(z) c V(x). Let U € U(x). Then U D O 5 z. But O € V(x) so
by V1 U € V(z).

(ii) V(x) C U(z). Let V € V(x). It is sufficient to prove that 30 € O
such that x € O C V.
Let O={y:V eV(y)} z € Osince V€ V(x).
O C Vsince y € V for all y € O by Vs.

To prove that O € O it is sufficient to prove that V' € V(y) for all
y € 0.

If t € OV € V(y) by definition of O therefore 3W € V (y) such
that V € V(z) for all z € W by V — 4.

Therefore W C O (definition of O)
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Therefore O € V(y) by V3
e.g. Ry : V(x)= sets which contain interval (a,b) a < z < b.

Definition 7 A metric for a set X is a function p form X x X to R* (non-
negative reals) such that

Ml p(xay) :p(yvx) for all z,y
M, p(I,Z) Sp(‘ray)+p(yaz) for all T, Y,z
M; p(x,z) =0 for all z.

This is sometimes called a pseudo metric and for a metric we have
(M3) p(z,y) 20, =0z =y

Definition 8 The open 7- Ball about = {y : p(x,y) < r} and is denoted
by B(r,x)
The closed r-ball around x = {y : p(z,y) < R} and is denoted by
B(r,z).

V(z) = { sets which contain one of B (%, x) n=1,2,...} satisfies V|_4
and so defines a topology on X. This topology is the metric topology
defined on X by p.

The development of topology from the neighbourhood point of ve=iew
is due to H. Weyl and Hausdorff. That from the open sets aspect is
due to Alexandroff and Hopf.

Definition 9 The closed sets GG of a topological space are the complements
of the open sets.

(G1) G is closed for arbitrary intersections

(G2) G is closed for finite unions. () and X are both closed and open.

Clearly given a family G satisfying GG; and G5 the family of comple-
ments is a topology for which the closed sets are the sets of G.

Definition 10 a point z is an interior point of a set A if A is a neighbourhood
of z.
The set of interior points of A is the interior A° of A.
An exterior point of A is an interior point of cA (i.e. 3 a neighbourhood
of z which does not meet A, or z is isolated, separated from A.)

Theorem 5 (i) The interior of a set is open and
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(ii) is the largest open subset.

(iii) A necessary and sufficient condition for a set to be open is that
it coincides with its interior.

Proof (i) = € A’ = 3 open O such that z € O C A.
y € O =y € A° therefore x € O C A° therefore A" is a neigh-
bourhood of each of its points and so it is open.
(ii) Let O C A = O C A° therefore Upc 400 C A°, but A° is such an
O therefore Up,0 = A°.
(iii) Sufficient condition from (i).

Necessary condition from (ii).
0 0

— —

ANB=A"NB°but AUB # AU BY

e.g. X = R; with metric topology, A=rationals, B=irrationals.

A% = () B° = () therefore A°UB% = (. But AUB = R; and so
0

——
AUB = R;.

——
However A U B® C AU B always.

Definition 11 A point x is adherent to a set A if every neighbourhood of x
meets A.

The set of points adherent to a set A is called the adherence (closure)
A of A.

An adherent point of A is an isolated point of A if there is a neighbour-
hood of A which contains no point of A other than x; otherwise it is a
point of accumulation (limit point) of A.

Examples (i) A=QCRA=R
(ii) In a discrete space no set has accumulation points, every point is
isolated.

(iii) In an indiscrete space every non-empty set has X as its adherence.

Theorem 5 (i) The adherence of a set is closed and
(ii) is the smallest closed set containing the given set

(iii) A is closed & A = A & A D its accumulation points.

-
cA = cA
cA? = A



Corollary A=A
AUB=AUB
Definition 12 The set of accumulation points of A is its derived set A’.

A perfect set is a closed set without isolated points.

Suppose we map P(X) — P(X) where A — A then

(C) 0=0
(Cy) ACA
(C3) AC A (with Cy = A =A)
(Cy) AUB=AUB.
Theorem 6 If we are given an operation mapping P(X) into P(X) which
has the properties C';_4 then the set of complements of the sets G such

that G = G is a topology on X for which AS is the closure of A for all
A C X (Kunatowski).

Definition 13 The frontier or boundary of a set A is AN cA and is the set
of points adherent to A and to cA, or is the set interior to neither A
nor cA, or is the set neither interior or exterior to A. It is a closed set.

A set is closed < it contains its boundary.

A set is open < it is disjoint from its boundary.

Definition 14 A set is dense in X if A = X.
A is dense in itself if all its points are accumulation point, i.e. A C A’.

A set is nowhere dense if ¢4 is dense i.e. A° = 0.

Induced topologies Given (XO) and Y C X , can we use O to get a
topology for Y.

Theorem 7 {Y NO}oco is a topology Oy on Y called the topology induced
on Y by (zO)

Proof (0,) UYNO=Y,U0
(02) Np Y, 0 =Y, NpO
It ZCcY C X then Oy and O induce the same topology on Z.

A (sub) base B for O induces a (sub) base By for Oy.
“O open in (relative to )Y” means“O open in (Y Oy).
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A necessary and sufficient condition that every set open in Y be open
in X is that Y be open in X.

Theorem 8 (i) G C Y isclosed in Y & G =Y NG’ where G’ is closed in
X.
(i) W(z) ={Y NV} v
(iii) If 2 C Y C X then Z,,y = Yo Z s

Proof (i) G is closed in Y

< Y NeGisopeninY
—YNecG=YNO;0 open in X
<Y NGE =Y NcO (take comp. in Y)
S G=YNcO
take G’ = cO.

(i) Y DU € Vy(x)
< UD0>2,0o0peninY
SUDO0O'NY 320 openin X
S U=VNY where VOO 5z
ie. U=Y NV where V € V(x).

(iii) Z,,y =N closed sets in Y which D Z
= N(Y closed sets D Z)
=Y N closed sets D Z
=Ynz

Continuous functions

Definition 15 A map F of a topological space X into a topological space
Y is continuous at zy € X if given a neighbourhood V' of f(z() in Y 3
a neighbourhood U of 0 in X such that f(U) C V.

f is continuous at g if for every neighbourhood V of f(zq) f~*(V) is
a neighbourhood of xg.

Theorem 9 If f: X — Y is continuous at X and x € A then f(x) € f(A)

Proof Let V € V(f(x0) then f~*(V) € V(z) therefore f~1(V) N A # 0.
Therefore f(f~H(V)) N f(A) # f(0) = 0.
fo f~!is the identity therefore V N f(A) # )

Theorem 10 if f: X — Y is continuous at xg and g : Y — Z is continuous
at f(xg) Then go f is continuous at z.
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Proof Let W € V(go f(xg)) then g7*(W) € V(f(x0))
flog {(W) € V(o) (gof) (W)€ V(xo)

Definition 16 A map f : X — is continuous (on X) if it is continuous at
each point of X.

Theorem 11 Let f: X — Y. Then the following properties are equivalent.

(i) f continuous on X
(ii) f(A) C f(A) for all A € P(X)
(iii) the inverse image of a closed set is closed

(iv) the inverse image of an open set is open.

Proof (i)= (ii) by theorem 9.
(i))= (iii) Let G’ be closed in Y and f~1(G") = G.
f(G) C f(G) by (i) cG' =G,

Therefore G C f~1(G") = G C G therefore G = G therefore f~1(G') is
closed.

(iil)= (iv)
cf HA)=f"YcA) ACY
(iv)= (i) Let z € Xv € V(f(x)).
dr€eOCV OopeninY. f71(O) is open in Y and contains z so is a
neighbourhood of z in X f(f~1(0)) Cc V

Note The image of an open set under a continuous map is not necessarily
open.
e.g. f:R—»er—»ﬁ
f(R) = (0 1] not open.

Comparison of Topologies

Definition 17 If O; and O, are topologies on a set X, O; is finer than
O5(0y is coarser then O) if O; D O, (strictly finer if not equal).
[Topologies on X are not necessarily complete]

e.e. Ry : Oj:usual topology Os: open sets are open sets of @7 which
contains O and {o}.

These topologies are not comparable.



Theorem 12 If O; and O, are topologies on X, the following properties are
equivalent:

(i) O1 D O,

(ii) Oy - closed sets are O closed

(iii) Vi(xz) D Va(z) for all z € X

(iv) The identity map (X O) — (X O3) is continuous.
(v) AV c A% forall Ac X

We also have the following qualitative results:

the discrete topology on a set is the finest topology on the set, and the
indiscrete is the coarsest.

The finer the topology, the more open sets, closed sets, neighbourhoods
of a point, the smaller the adherence, the larger the interior of a set,
the fewer the dense sets.

If we refine the topology of X we get more continuous functions. If we
refine the topology of Y we get fewer continuous functions.

Final Topologies

Theorem 13 Let X be a set. Let (Y;,0; = {O;;}jes)ier be a family of
topological spaces.
Let f;:Y; — X. Let O ={O C X : f7*(0) open in Y; for all i € I}.

Then O is a topology on X and is the finest for which the f; are
continuous.

If g: X — Z is a map into a topological space Z, ¢ is continuous from
(XO) — Z & go f; are all continuous.

Proof O is non-empty: f~}(X) =Y,
(01) Let f;l(Ok) € 01, Ok c O Then f;1<UkOk) = UKffl(Ok) < 01
for all 7.
(Oy) Let 71O — k) € O;, O € O. Then f 1 (NpOy) = Npfi 1 (Oy) €
O; for all .

A necessary and sufficient condition for f; to be continuous is that
f,1(O) be open in Y; for all i. A finer topology than O will not satisfy
this.

Nowlet f; Y, = X g: X —-Zgof,:Y,— Z



The necessary condition is obvious.

Sufficient condition:

g: X — Y continuous < ¢~ (O) open in X for all O open in Z.

g o f; continuous = go f; *(O) open in Y; for all i

= fi1og7(0) open in Y; for all i

= ¢ 1(O) is open in X

We define O to be the final topology for X, the maps f; and spaces Y;.

Examples (i) X a topological space. R is an equivalence relation on X.
¢: X =2 =Y x> i (class)
The finest topology on Y such that ¢ is continuous is the quotient

topology of that of X by the relation R.
X

: % — Z is continuous < fo¢: X — Z is continuous.
eg. X+ Ry
R (21 1) ~ (72 y2) & 71 = 70
Then % = R (isomorphically).
(ii) X aset. (X0O,;) a family of topological spaces.
¢ (X, 0, > Xzr—u
The final topology on X is the finest topology coarser than all the
O;.
O is called the lower bound of the O;. O = N;O;

Initial Topologies
Theorem 14 Let X be aset. Let (Y;0;);er be a family of topological spaces.
Let fz : X — Y; Let fz . X — Y; Let S = {fifl(Oij>}i€I,j€Ji-

Then S is a sub-base for a topology J on X, the coarsest topology for
which all the f; are continuous.

If Z is a topological space g : Z — X is continuous < f; o g continuous
foralli e I

Proof S is non-empty, for ) € S.
UsesS = X (—f;1(Y;)) then use theorem 2.
A necessary and sufficient condition for f; to be continuous is the
f71(O4;) be open in J for all ij.

the rest of the proof is similar to theorem 13.

We define J as the initial topology for X, the maps f; and spaces Y;.
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Examples (i) X aset (YO) a topological space f: X — Y.

the initial topology here is called the inverse image of O.

(i) f X CY f: X —Y z xis the canonical injection.
f7Y(A) = AN X and the open sets of the initial topology are the
intersections with X of the open sets of Y- we have the induced
topology.

(iii) (XO;) ¢1: X - X o — .
The initial topology is the coarsest topology finer than all the O;

(iv) (XiO0i)ier X = Ilier Xi
¢ = proj; : X — X {xi}ier — x5
the initial topology is the coarsest for which all the projections are
continuous and is called the product topology of the O;. (XJ)
is the topological product of the (X;,O;). The (X;, O;) are the
Factor spaces. The open sets of the product topology have as
base the finite intersections of sets proj; *(0O,;) where O, is open
in (X; O,).
proj[l(Oij = [lie; Ai where A, = X, i # j, A; = O;; and the
base consists of sets [[;c; A; where A; = X, except for a finite set
of i, where A; is open in X;. These are called elementary sets.

g : Z — 1 X; is continuous < proj; o g is continuous for all i i.e.
all the co-ordinates are continuous.

Limit Processes Consider the following limit processes:

(i) lim a,

n—oo

(ii) lim f(z)

b
(i) R [ (@) dv = Tim 3 (i1 — ) (&)
What have these in common.

A. A set with some order properties
(i) Z— Rnw—a,
(i) V(a) = R v — f(v)
(iii) Nets on (a b) N — I(N, f)
B. A map of the ordered set into a topological space.

C. We consider the set of images as we proceed along the order.
We now unify all these.
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The Theory of Filters (H.CARTAN 1937)

Definition 18 A filter on a set X is a family F C P(X) such that

(F1) Ac Fand BODA=BeF
(F2) F is closed for finite intersections

(F3) 0 ¢ F.

F3 = every finite A" in F' is non-empty.
Fy, = X € Fie. F is non-empty.

Examples (i) X # 0 {x} is a filter on X.
(i) 0AACX:{Y:Y D A} is afilter on X.
(iii) X an infinite set.
The complements of the finite subsets form a filter on X.

(iv) If X = Z (the positive integers) the filter of (iii) is called the
Fréchet filter.

(v) X a topological space. The set of neighbourhoods of ) # A C X
is a filter. A = {z} gives the neighbourhoods of x.
Comparison of Filters
Definition 19 If F and F’ are filters on a set X and F C F’ we say F is
coarser than F', F’ is finer than F.

Filters are not neccessarily comparable e.g. the filters of neighbour-
hoods of distinct points in a metric space.
If {F,}ier is a family of filters on X then F = ﬂ F; is a filter.

iel

Definition 20 The intersection of the F; is the finest filter coarser than all
the F; and is the lower bound of the F;.

Theorem 15 Let S be a system of sets in X . A necessary and sufficient
condition that J a filter on X containing S is that the finite intersections
of members of S be non-empty.

Proof Necessary: Immediate from Fy

Sufficient: Consider the family F of sets which contain a member of
S’, the set of finite intersections on S.

F satisfies Fy, Fy, F3.
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Any filter D S is finer than F. F is the coarsest filter O S.

S is called a system of generators of F.

Corollary 1 Fisafilteron X, A C X. A necessary and sufficient condition
that 3F D F such that A € F'is that F N A # OVF € F.

Corollary 2 A set ® of filter on (non-empty) X has an upper bound in the
set of all filters on X < for every finite sequence.

{Fiticio..n CPandevery A, € F; i =1,2,...nNA; # 0.

Filter Bases If S is a system of generators for F, F is not, in general, the
set of subsets of X which contain an element of S

Theorem 16 Given B C P(X), a necessary condition that the family of
subsets of X which contain an element of B be a filter is that B have
the properties

(B1) The intersection of 2 sets of B contains a set of B.
(B2) B is not empty; 0 & B.

Definition 21 A system B C P(X) satisfying By, By is called a base for the
filter it generates by Theorem 16.

2 filter bases are equivalent if they generate the same filter.
Theorem 17 B C F is a base for F < each set of F contains a set of B.

Theorem 18 A necessary and sufficient condition that F’ with base B’ be
finer than F with base B id B’ C B.

Examples (i) Let X be a non-empty partially ordered set (<) in which each
pair of elements has an upper bound. The sections {z : z > a}
of X form a filter base. The filter it defines is called the filter of
sections of X.

(ii) X=setof netson [a,b] N = (a =29 <x; <...<x, =0) Nj < Ny
if Ny C Ns.
An upper bound for N7 and Ny is N7 U Ns.

11
(iii) The filter of neighbourhoods of O in R; has as bases { (——, —) } ,

11
——, = —a,b) ab > 0} etc.
{[-2 ) b ab> 0 exe
(iv) In Ry the squares, discs, ellipses et. centre 0 form bases for the
filter of neighbourhoods of 0.
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(v) In Ry {x,|x| > n} is a filter base.

Definition 22 A fundamental system of neighbourhoods of a point in a
topological space is a base for the filter of neighbourhoods of the point.

Definition 23 A space satisfies the first axiom of countability if every point
has a countable fundamental system of neighbourhoods.
2nd axiom = Ist axiom
1st axiom # 2nd axiom.
e.g. X uncountable, with discrete topology. {x} is a base for the

neighbourhoods of z and is countable.

Theorem 19 Let F be a filter on X A C X. A necessary and sufficient
condition that F4 = {F N A}per be a filter on A is that FF'N A #
OVF € F.

If Ae F Fjuis afilter on A.

Definition 24 F, is a filter induced on A by F
e.g. X a topological space A C X Vy(r) is afilteron A< 2 C A

Let f: X — Y and let F be a filter on X. Then in general {f(F)}rer
is not a filter, for Fy breaks down. But if B is a filter base for a filter
on X then {f(B)}pges is a base for a filter i=on Y.

Definition 25 X a topological space. F a filter on X. z is a limit point of
F if F D V(x) we say F converges to X.

x is a limit of a filter base B if the filter with base B converges to x

e.g.

11
(i) In Ry, the filter with base {(——, —>} converges to 0, but that
n’'n

with base {{z : || > n}} does not converge.

(ii)

X = Azy,2}

O = {0 {z,y} {3 X}

B = {{z,y;X}
Vie) = {{z,y}X}

Therefore B converges to z, V(y) = {(z,y) X} therefore B con-
verges to y.
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Definition 26 X a topological space.

B is a filter base on X. x is adherent to B if it is adherent to every set

of B.

z is adherent to B< VN B # OV € V(x), B € B.

Every limit point of a filter is adherent to the filter.

The set of point adherent to a filter is NgepB and is closed.

Definition 27 Let X be a set, Y a topological space. Let P : X — Y. Let
F be a filter on X.

y € Y is a limit of F along F if y is adherent to P(F)

Examples (i) Fréchet F (of sections of Z) a:Z — R n+ a,.
A set of the filterisaset D {m :m >n} = F a(Fs{a, : m > n}.
a is a limit of a along F < a is adherent to every set of F i.e.
every (a —e,a+ ¢) meets every set of F i.e. (a—¢e,a+¢)N{ay :
m >n} # ) for all n.

(ii) X a topological space, Y a topological space.  : X — Y. V(a)

V

is the filter of neighbourhoods of a € X.
In this case we write y = lim P(z) instead of li]r__n P.

Theorem 20 X,Y topological spaces.
P: X — Y continuous at a € Y < lim P(z) = P(a).

r—a

Proof lim P(z) = P(a) < given v € U(P(a))3V € V(a) such that P(V) C

r—a

U.

let X,Y be topological spaces. Let A C X andlet a € A. Let f: A —
Y. Let F = VA(CL) = {A N V}veV(a)~

We write lim B f(z) instead of li}n f.

r—a,re

Definition 28 lim N f(z) is a limit of f at a relative to A.

r—a, rTE

Theorem 21 Let X be a set and let {Y;};c; be a family of topological spaces.
Let f; : X =Y.

A filter F on X converges to a € X in the initial topology O on X <
the filter base f;(F) converges to f;(a) Vi € 1.
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Proof Necessary condition: The f; are continuous by Theorem 20.
Sufficient condition: Let w € V(a). By definition of O3 N; A; C W
where a € A; = f71(O;), O; open in Y; and J is a finite set.

Since f;(F) converges to fi(a) in Y; O; € fi(F) and f~1(O;) € F so
that N, f~1(0;) € Fie. V(a) CF.

Corollary A filter F on a product space X = HXi converges to r < the

T
filter base pr;(F) converges to x; Vi € 1.
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