
POINT SET TOPOLOGY

Definition 1 A topological structure on a set X is a family O ⊂ P(X)
called open sets and satisfying

(O1) O is closed for arbitrary unions

(O2) O is closed for finite intersections.

Definition 2 A set with a topological structure is a topological space (X,O)

∪∅ = ∪i∈∅Ei = {x : x ∈ Eifor some i ∈ ∅} = ∅

so ∅ is always open by (O1)

∩∅ = ∩i∈∅Ei = {x : x ∈ Eifor all i ∈ ∅} = X

so X is always open by (O2).

Examples (i) O = P(X) the discrete topology.

(ii) O{∅, X} the indiscrete of trivial topology.

These coincide when X has one point.

(iii) Q=the rational line.

O=set of unions of open rational intervals

Definition 3 Topological spaces X and X ′ are homomorphic if there is an
isomorphism of their topological structures i.e. if there is a bijection
(1-1 onto map) of X and X ′ which generates a bijection of O and O.

e.g. If X and X are discrete spaces a bijection is a homomorphism.
(see also Kelley p102 H).

Definition 4 A base for a topological structure is a family B ⊂ O such that
every o ∈ O can be expressed as a union of sets of B

Examples (i) for the discrete topological structure {x}x∈X is a base.

(ii) for the indiscrete topological structure {∅, X} is a base.

(iii) For Q, topologised as before, the set of bounded open intervals is
a base.
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(iv) Let X = {0, 1, 2}
Let B = {(0, 1), (1, 2), (0, 12)}. Is this a base for some topology
on X? i.e. Do unions of members of X satisfy (O2)?

(0, 1)∩ (1, 2) = (1)- which is not a union of members of B, so B is
not a base for any topology on X.

Theorem 1 A necessary and sufficient condition for B to be a base for a
topology on X = ∪o∈Bo is that for each O′ and O′′ ∈ B and each
x ∈ O′ ∩O′′∃O ∈ B such that x ∈ O ⊂ O′ ∩O′′.

Proof Necessary: If B is a base for O, O′∩O′′ ∈ O and if x ∈ O′∩O′′, since
O′ ∩O′′ is a union of sets of B ∃O ∈ B such that x ∈ O ⊂ O′ ∩O′′.
Sufficient: let O be the family of unions of sets of B.
(O1) is clearly satisfied.

(O2) (∪Ai) ∩ (∪Bj) = ∪(Ai ∩ Bj) so that it is sufficient to prove that
the intersection of two sets of B is a union of sets of B.
Let x ∈ O′ ∩O′′. Then ∃Ox ∈ B such that x ∈ O x ⊂ O′ ∩O′′ so that
O′ ∩O′′ = ∪x∈O′∩O′′Ox.

Theorem 2 If S is a non-empty family of sets the family B of their finite
intersections is a base for a topology on ∪S

Proof Immediate verification of O1 and O2. The topology generated in this
way is the smallest topology including all the sets of S.

Definition 4 A family S is a sub base for a topology if the set of finite
intersections is a base for the topology.

e.g. {a∞}a∈Q and {(−∞ a)}a∈Q are sub bases for Q

Definition 5 If a topology has a countable base it satisfies the second axiom
of countability.

Definition 6 In a topological space a neighbourhood of a set A is a set
which contains an open set containing A. A neighbourhood of a point
X is a neighbourhood of {x}.

Theorem 3 A necessary and sufficient condition that a set be open is that
it contains (is) a neighbourhood of each of its points.

Proof Necessary: Definition of a neighbourhood

Sufficient: Let OA = ∪ open subsets of A. OA is open (O1) and OA ⊂ A.
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If x ∈ A A ⊃ a neighbourhood of x ⊃ open set 3 x therefore x ∈ OA

therefore A ⊂ OA.

Let V (x) denote the family of neighbourhoods of x. Then V (x) has
the following properties.

(V1) Every subset of X which contains a member of V (x) is a member
of V (x)

(V2) V (x) is closed for finite intersections

(V3) x belongs to every member of V (x).

(V4) If v ∈ V (x)∃W ∈ V (x) such that v ∈ V (y) for all y ∈ W .

(Take W to be an open set 3 x and ⊂ V .)

Theorem 4 If for each point x of X there is given a family V (x) of subsets
of X, satisfying V1−4 then ∃ a unique topology on X for which the
sets of neighbourhoods of each point x are precisely the given V (x).
(Hausdorff).

Proof If such a topology exists theorem 3 shows that the open sets must be
the O such that for each x ∈ O O ∈ V (x) and so there is at most one
such topology. Consider the set O so defined.

(O1) Suppose x ∈ ∪O. Then x ∈some O′ O′ ∈ V (x) O′ ⊂ |cupO so
∪O ∈ V (x).

(O2) Suppose x ∈ ∩F o ⇒ x ∈ each O. each O ∈ V (x) therefore
∩FO ∈ V (x) by V2.

Now consider the system U(x) of neighbourhoods of x defined by this
topology.

(i) U(x) ⊂ V (x). Let U ∈ U(x). Then U ⊃ O 3 x. But O ∈ V (x) so
by V1 U ∈ V (x).

(ii) V (x) ⊂ U(x). Let V ∈ V (x). It is sufficient to prove that ∃O ∈ O
such that x ∈ O ⊂ V .

Let O = {y : V ∈ V (y)} x ∈ O since V ∈ V (x).

O ⊂ V since y ∈ V for all y ∈ O by V3.

To prove that O ∈ O it is sufficient to prove that V ∈ V (y) for all
y ∈ O.

If t ∈ O V ∈ V (y) by definition of O therefore ∃W ∈ V (y) such
that V ∈ V (z) for all z ∈ W by V − 4.

Therefore W ⊂ O (definition of O)
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Therefore O ∈ V (y) by V1

e.g. R1 : V (x)= sets which contain interval (a, b) a < x < b.

Definition 7 A metric for a set X is a function ρ form X ×X to R+ (non-
negative reals) such that

M1 ρ(x, y) = ρ(y, x) for all x, y

M2 ρ(x, z) ≤ ρ(x, y) + ρ(y, z) for all x, y, z

M3 ρ(x, x) = 0 for all x.

This is sometimes called a pseudo metric and for a metric we have

(M ′
3) ρ(x, y) ≥ 0, = 0⇔ x = y.

Definition 8 The open r- Ball about x = {y : ρ(x, y) < r} and is denoted
by B(r, x)

The closed r-ball around x = {y : ρ(x, y) ≤ R} and is denoted by
B(r, x).

V (x) = { sets which contain one of B
(

1
n
, x
)

n = 1, 2, . . .} satisfies V1−4

and so defines a topology on X. This topology is the metric topology
defined on X by ρ.

The development of topology from the neighbourhood point of ve=iew
is due to H. Weyl and Hausdorff. That from the open sets aspect is
due to Alexandroff and Hopf.

Definition 9 The closed sets G of a topological space are the complements
of the open sets.

(G1) G is closed for arbitrary intersections

(G2) G is closed for finite unions. ∅ and X are both closed and open.

Clearly given a family G satisfying G1 and G2 the family of comple-
ments is a topology for which the closed sets are the sets of G.

Definition 10 a point x is an interior point of a setA ifA is a neighbourhood
of x.

The set of interior points of A is the interior A0 of A.

An exterior point of A is an interior point of cA (i.e. ∃ a neighbourhood
of x which does not meet A, or x is isolated, separated from A.)

Theorem 5 (i) The interior of a set is open and
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(ii) is the largest open subset.

(iii) A necessary and sufficient condition for a set to be open is that
it coincides with its interior.

Proof (i) x ∈ A0 ⇒ ∃ open O such that x ∈ O ⊂ A.

y ∈ O ⇒ y ∈ A0 therefore x ∈ O ⊂ A0 therefore A0 is a neigh-
bourhood of each of its points and so it is open.

(ii) Let O ⊂ A⇒ O ⊂ Ao therefore ∪O⊂A0O ⊂ Ao, but A0 is such an
O therefore ∪O⊂AO = A0.

(iii) Sufficient condition from (i).

Necessary condition from (ii).
0

︷ ︸︸ ︷

A ∩B = A0 ∩B0 but

0
︷ ︸︸ ︷

A ∪B 6= A0 ∪B0

e.g. X = R1 with metric topology, A=rationals, B=irrationals.

A0 = ∅ B0 = ∅ therefore A0 ∪ B0 = ∅. But A ∪ B = R1 and so
0

︷ ︸︸ ︷

A ∪B = R1.

However A0 ∪B0 ⊂
0

︷ ︸︸ ︷

A ∪B always.

Definition 11 A point x is adherent to a set A if every neighbourhood of x
meets A.

The set of points adherent to a set A is called the adherence (closure)
A of A.

An adherent point of A is an isolated point of A if there is a neighbour-
hood of A which contains no point of A other than x; otherwise it is a
point of accumulation (limit point) of A.

Examples (i) A = Q ⊂ R A = R

(ii) In a discrete space no set has accumulation points, every point is
isolated.

(iii) In an indiscrete space every non-empty set hasX as its adherence.

Theorem 5 (i) The adherence of a set is closed and

(ii) is the smallest closed set containing the given set

(iii) A is closed ⇔ A = A⇔ A ⊃ its accumulation points.

cA =

0
︷︸︸︷

cA

cA0 = cA
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Corollary A = A

A ∪B = A ∪B

Definition 12 The set of accumulation points of A is its derived set A′.

A perfect set is a closed set without isolated points.

Suppose we map P(X)→ P(X) where A→ A then

(C1) ∅ = ∅
(C2) A ⊂ A

(C3) A ⊂ A (with C2 ⇒ A = A)

(C4) A ∪B = A ∪B.

Theorem 6 If we are given an operation mapping P(X) into P(X) which
has the properties C1−4 then the set of complements of the sets G such
that G = G is a topology on X for which AS is the closure of A for all
A ⊂ X (Kunatowski).

Definition 13 The frontier or boundary of a set A is A ∩ cA and is the set
of points adherent to A and to cA, or is the set interior to neither A
nor cA, or is the set neither interior or exterior to A. It is a closed set.

A set is closed ⇔ it contains its boundary.

A set is open ⇔ it is disjoint from its boundary.

Definition 14 A set is dense in X if A = X.

A is dense in itself if all its points are accumulation point, i.e. A ⊂ A′.

A set is nowhere dense if cA is dense i.e. A
0
= ∅.

Induced topologies Given (XO) and Y ⊂ X , can we use O to get a
topology for Y .

Theorem 7 {Y ∩O}O∈O is a topology OY on Y called the topology induced
on Y by (xO)

Proof (O1) ∪ Y ∩O = Yn ∪O
(O2) ∩F YnO = Yn ∩F O

If Z ⊂ Y ⊂ X then OY and O induce the same topology on Z.

A (sub) base B for O induces a (sub) base BY for OY .

“O open in (relative to )Y ” means“O open in (Y OY ).
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A necessary and sufficient condition that every set open in Y be open
in X is that Y be open in X.

Theorem 8 (i) G ⊂ Y is closed in Y ⇔ G = Y ∩G′ where G′ is closed in
X.

(ii) VY (x) = {Y ∩ V }v∈V (x)

(iii) If z ⊂ Y ⊂ X then ZmY = YnZmx

Proof (i) G is closed in Y

⇔ Y ∩ cG is open in Y

↔ Y ∩ cG = Y ∩O;O open in X

⇔ Y ∩G = Y ∩ cO (take comp. in Y )

⇔ G = Y ∩ cO
take G′ = cO.

(ii) Y ⊃ U ∈ VY (x)

⇔ U ⊃ O 3 x, O open in Y

⇔ U ⊃ O′ ∩ Y 3 x O′ open in X

⇔ U = V ∩ Y where V ⊃ O′ 3 x

i.e. U = Y ∩ V where V ∈ V (x).

(iii) ZmY =
⋂

closed sets in Y which ⊃ Z

=
⋂
(Y∩ closed sets ⊃ Z)

= Y ∩ ⋂ closed sets ⊃ Z

= Y ∩ Z

Continuous functions

Definition 15 A map F of a topological space X into a topological space
Y is continuous at x0 ∈ X if given a neighbourhood V of f(x0) in Y ∃
a neighbourhood U of x+0 in X such that f(U) ⊂ V .

f is continuous at x0 if for every neighbourhood V of f(x0) f
−1(V ) is

a neighbourhood of x0.

Theorem 9 If f : X → Y is continuous at X and x ∈ A then f(x) ∈ f(A)

Proof Let V ∈ V (f(x0) then f−1(V ) ∈ V (x) therefore f−1(V ) ∩ A 6= ∅.
Therefore f(f−1(V )) ∩ f(A) 6= f(∅) = ∅.
f ◦ f−1 is the identity therefore V ∩ f(A) 6= ∅

Theorem 10 if f : X → Y is continuous at x0 and g : Y → Z is continuous
at f(x0) Then g ◦ f is continuous at x0.
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Proof Let W ∈ V (g ◦ f(x0)) then g−1(W ) ∈ V (f(x0))

f−1 ◦ g−1(W ) ∈ V (x0) (g ◦ f)−1(W ) ∈ V (x0)

Definition 16 A map f : X → is continuous (on X) if it is continuous at
each point of X.

Theorem 11 Let f : X → Y . Then the following properties are equivalent.

(i) f continuous on X

(ii) f(A) ⊂ f(A) for all A ∈ P(X)

(iii) the inverse image of a closed set is closed

(iv) the inverse image of an open set is open.

Proof (i)⇒ (ii) by theorem 9.

(ii)⇒ (iii) Let G′ be closed in Y and f−1(G′) = G.

f(G) ⊂ f(G) by (ii) ⊂ G′ = G′.

Therefore G ⊂ f−1(G′) = G ⊂ G therefore G = G therefore f−1(G′) is
closed.

(iii)⇒ (iv)

cf−1(A) = f−1(cA) A ⊂ Y

(iv)⇒ (i) Let x ∈ Xv ∈ V (f(x)).

∃x ∈ O ⊂ V O open in Y . f−1(O) is open in Y and contains x so is a
neighbourhood of x in Xf(f−1(O)) ⊂ V

Note The image of an open set under a continuous map is not necessarily
open.

e.g. f : R→ R x 7→ 1
1+x2

f(R) = (0 1] not open.

Comparison of Topologies

Definition 17 If O1 and O2 are topologies on a set X, O1 is finer than
O2(O2 is coarser then O) if O1 ⊃ O2 (strictly finer if not equal).

[Topologies on X are not necessarily complete]

e.e. R1 : O1:usual topology O2: open sets are open sets of O1 which
contains O and {o}.
These topologies are not comparable.
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Theorem 12 If O1 and O2 are topologies on X, the following properties are
equivalent:

(i) O1 ⊃ O2

(ii) O2 - closed sets are O1 closed

(iii) V1(x) ⊃ V2(x) for all x ∈ X

(iv) The identity map (X O)→ (XO2) is continuous.

(v) A
(1) ⊂ A

(2)
for all A ⊂ X

We also have the following qualitative results:

the discrete topology on a set is the finest topology on the set, and the
indiscrete is the coarsest.

The finer the topology, the more open sets, closed sets, neighbourhoods
of a point, the smaller the adherence, the larger the interior of a set,
the fewer the dense sets.

If we refine the topology of X we get more continuous functions. If we
refine the topology of Y we get fewer continuous functions.

Final Topologies

Theorem 13 Let X be a set. Let (Yi,Oi = {Oij}j∈Ji
)i∈I be a family of

topological spaces.

Let fi : Yi → X. Let O = {O ⊂ X : f−1
i (o) open in Yi for all i ∈ I}.

Then O is a topology on X and is the finest for which the fi are
continuous.

If g : X → Z is a map into a topological space Z, g is continuous from
(XO)→ Z ⇔ g ◦ fi are all continuous.

Proof O is non-empty: f−1(X) = Yi

(O1) Let f
−1
i (Ok) ∈ O1, Ok ∈ O. Then f−1

i (∪kOk) = ∪Kf
−1
i (Ok) ∈ O1

for all i.

(O2) Let f
−1
i (O − k) ∈ Oi, Ok ∈ O. Then f−1

i (∩FOk) = ∩Ff
−1
i (Ok) ∈

Oi for all i.

A necessary and sufficient condition for fi to be continuous is that
f−1

i (O) be open in Yi for all i. A finer topology than O will not satisfy
this.

Now let fi : Yi → X g : X → Z g ◦ fi : Yi → Z.
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The necessary condition is obvious.

Sufficient condition:

g : X → Y continuous ⇔ g−1(O) open in X for all O open in Z.

g ◦ fi continuous ⇒ g ◦ fi
−1(O) open in Yi for all i

⇒ f−1
i ◦ g−1(o) open in Yi for all i

⇒ g−1(O) is open in X

We define O to be the final topology for X, the maps fi and spaces Yi.

Examples (i) X a topological space. R is an equivalence relation on X.

φ : X → X
r
= Y x 7→ ẋ ( class)

The finest topology on Y such that φ is continuous is the quotient
topology of that of X by the relation R.

f : X
R
→ Z is continuous ⇔ f ◦ φ : X → Z is continuous.

e.g. X +R2

R : (x1 y1) ∼ (x2 y2)⇔ x1 = x2.

Then X
R
= R (isomorphically).

(ii) X a set. (XOi) a family of topological spaces.

φi : (X,Oi → X x 7→ x

The final topology on X is the finest topology coarser than all the
Oi.

O is called the lower bound of the Oi. O = ∩iOi

Initial Topologies

Theorem 14 LetX be a set. Let (YiOi)i∈I be a family of topological spaces.
Let fi : X → Yi. Let fi : X → Yi. Let S = {f−1

i (Oij)}i∈I,j∈Ji
.

Then S is a sub-base for a topology J on X, the coarsest topology for
which all the fi are continuous.

If Z is a topological space g : Z → X is continuous⇔ fi ◦ g continuous
for all i ∈ I

Proof S is non-empty, for ∅ ∈ S.

∪s∈SS = X(−f−1
i (Yi)) then use theorem 2.

A necessary and sufficient condition for fi to be continuous is the
f−1

i (Oij) be open in J for all ij.

the rest of the proof is similar to theorem 13.

We define J as the initial topology for X, the maps fi and spaces Yi.
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Examples (i) X a set (YO) a topological space f : X → Y .

the initial topology here is called the inverse image of O.

(ii) If X ⊂ Y f : X → Y x 7→ x is the canonical injection.

f−1(A) = A ∩X and the open sets of the initial topology are the
intersections with X of the open sets of Y - we have the induced
topology.

(iii) (XOi) φ1 : X → X x 7→ x.

The initial topology is the coarsest topology finer than all the Oi

(iv) (XiOi)i∈I X =
∏

i∈I Xi

φi = proji : X → Xi {xi}i∈I 7→ xi

the initial topology is the coarsest for which all the projections are
continuous and is called the product topology of the Oi. (XJ )
is the topological product of the (Xi,O1). The (Xi,Oi) are the
Factor spaces. The open sets of the product topology have as
base the finite intersections of sets proj−1

i (Oij) where Oij is open
in (Xi Oi).

proj−1
i (Oij =

∏

i∈I Ai where Au = Xu i 6= j, Aj = Oij and the
base consists of sets

∏

i∈I Ai where Ai = Xi except for a finite set
of i, where Ai is open in Xi. These are called elementary sets.

g : Z → ∏
Xi is continuous ⇔ proji ◦ g is continuous for all i i.e.

all the co-ordinates are continuous.

Limit Processes Consider the following limit processes:

(i) lim
n→∞

an

(ii) lim
x→a

f(x)

(iii) R

∫ b

a
f(x) dx = lim

∑

(xi+1 − xi)f(ξi)

What have these in common.

A. A set with some order properties

(i) Z → R n 7→ an

(ii) V (a)→ R v 7→ f(v)

(iii) Nets on (a b) N → I(N, f)

B. A map of the ordered set into a topological space.

C. We consider the set of images as we proceed along the order.

We now unify all these.
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The Theory of Filters (H.CARTAN 1937)

Definition 18 A filter on a set X is a family F ⊂ P(X) such that

(F1) A ∈ F and B ⊃ A⇒ B ∈ F
(F2) F is closed for finite intersections

(F3) ∅ 6∈ F .

F3 ⇒ every finite An in F is non-empty.

F2 ⇒ X ∈ F i.e. F is non-empty.

Examples (i) X 6= ∅ {x} is a filter on X.

(ii) ∅ 6= A ⊂ X : {Y : Y ⊃ A} is a filter on X.

(iii) X an infinite set.

The complements of the finite subsets form a filter on X.

(iv) If X = Z (the positive integers) the filter of (iii) is called the
Fréchet filter.

(v) X a topological space. The set of neighbourhoods of ∅ 6= A ⊂ X

is a filter. A = {x} gives the neighbourhoods of x.

Comparison of Filters

Definition 19 If F and F ′ are filters on a set X and F ⊂ F ′ we say F is
coarser than F ′, F ′ is finer than F .

Filters are not neccessarily comparable e.g. the filters of neighbour-
hoods of distinct points in a metric space.

If {Fn}i∈I is a family of filters on X then F =
⋂

i∈I

Fi is a filter.

Definition 20 The intersection of the Fi is the finest filter coarser than all
the Fi and is the lower bound of the Fi.

Theorem 15 Let S be a system of sets in X . A necessary and sufficient
condition that ∃ a filter onX containing S is that the finite intersections
of members of S be non-empty.

Proof Necessary: Immediate from F2

Sufficient: Consider the family F of sets which contain a member of
S ′, the set of finite intersections on S.
F satisfies F1, F2, F3.
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Any filter ⊃ S is finer than F . F is the coarsest filter ⊃ S.
S is called a system of generators of F .

Corollary 1 F is a filter on X, A ⊂ X. A necessary and sufficient condition
that ∃F ′ ⊃ F such that A ∈ F ′ is that F ∩ A 6= ∅∀F ∈ F .

Corollary 2 A set Φ of filter on (non-empty) X has an upper bound in the
set of all filters on X ⇔ for every finite sequence.

{Fi}i=1,2,...,n ⊂ Φ and every Ai ∈ Fi i = 1, 2, . . . n ∩ Ai 6= ∅.

Filter Bases If S is a system of generators for F , F is not, in general, the
set of subsets of X which contain an element of S

Theorem 16 Given B ⊂ P(X), a necessary condition that the family of
subsets of X which contain an element of B be a filter is that B have
the properties

(B1) The intersection of 2 sets of B contains a set of B.
(B2) B is not empty; ∅ 6∈ B.

Definition 21 A system B ⊂ P(X) satisfying B1, B2 is called a base for the
filter it generates by Theorem 16.

2 filter bases are equivalent if they generate the same filter.

Theorem 17 B ⊂ F is a base for F ⇔ each set of F contains a set of B.

Theorem 18 A necessary and sufficient condition that F ′ with base B′ be
finer than F with base B id B′ ⊂ B.

Examples (i) LetX be a non-empty partially ordered set (≤) in which each
pair of elements has an upper bound. The sections {x : x ≥ a}
of X form a filter base. The filter it defines is called the filter of
sections of X.

(ii) X=set of nets on [a, b] N = (a = x0 < x1 < . . . < xn = b) N1 ≤ N2

if N1 ⊂ N2.

An upper bound for N1 and N2 is N1 ∪N2.

(iii) The filter of neighbourhoods of O in R1 has as bases
{(

− 1

n
,
1

n

)}

,
{[

− 1

n
,
1

n

)}

{(−a, b) ab > 0} etc.

(iv) In R2 the squares, discs, ellipses et. centre 0 form bases for the
filter of neighbourhoods of 0.
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(v) In R1 {x, |x| > n} is a filter base.

Definition 22 A fundamental system of neighbourhoods of a point in a
topological space is a base for the filter of neighbourhoods of the point.

Definition 23 A space satisfies the first axiom of countability if every point
has a countable fundamental system of neighbourhoods.

2nd axiom ⇒ 1st axiom

1st axiom 6⇒ 2nd axiom.

e.g. X uncountable, with discrete topology. {x} is a base for the
neighbourhoods of x and is countable.

Theorem 19 Let F be a filter on X A ⊂ X. A necessary and sufficient
condition that FA = {F ∩ A}F∈F be a filter on A is that F ∩ A 6=
∅∀F ∈ F .

If A ∈ F FA is a filter on A.

Definition 24 FA is a filter induced on A by F
e.g. X a topological space A ⊂ X VA(x) is a filter on A⇔ x ⊂ A

Let f : X → Y and let F be a filter on X. Then in general {f(F )}F∈F

is not a filter, for F2 breaks down. But if B is a filter base for a filter
on X then {f(B)}B∈B is a base for a filter i=on Y .

Definition 25 X a topological space. F a filter on X. x is a limit point of
F if F ⊃ V (x) we say F converges to X.

x is a limit of a filter base B if the filter with base B converges to x

e.g.

(i) In R1, the filter with base
{(

− 1

n
,
1

n

)}

converges to 0, but that

with base {{x : |x| > n}} does not converge.

(ii)

X = {x, y, z}
O = {∅, {x, y}, {z}X}
B = {{x, y}X}

V (x) = {{x, y}X}

Therefore B converges to x, V (y) = {(x, y) X} therefore B con-
verges to y.
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Definition 26 X a topological space.

B is a filter base on X. x is adherent to B if it is adherent to every set
of B.
x is adherent to B ⇔ V ∩B 6= ∅∀V ∈ V (x), B ∈ B.
Every limit point of a filter is adherent to the filter.

The set of point adherent to a filter is ∩B∈BB and is closed.

Definition 27 Let X be a set, Y a topological space. Let P : X → Y . Let
F be a filter on X.

y ∈ Y is a limit of F along F if y is adherent to P(F)

Examples (i) Fréchet F (of sections of Z) α : Z → R n 7→ an.

A set of the filter is a set ⊃ {m : m ≥ n} = F α(F3{am : m ≥ n}.
a is a limit of α along F ⇔ a is adherent to every set of F i.e.
every (a− ε, a+ ε) meets every set of F i.e. (a− ε, a+ ε)∩ {am :
m ≥ n} 6= ∅ for all n.

(ii) X a topological space, Y a topological space. √ : X → Y . V (a)

is the filter of neighbourhoods of a ∈ X.

In this case we write y = lim
x→a

P(x) instead of lim
F
P .

Theorem 20 X,Y topological spaces.

P : X → Y continuous at a ∈ Y ⇔ lim
x→a

P(x) = P(a).

Proof lim
x→a

P(x) = P(a)⇔ given u ∈ U(P(a))∃V ∈ V (a) such that P(V ) ⊂
U .

let X,Y be topological spaces. Let A ⊂ X and let a ∈ A. Let f : A→
Y . Let F = VA(a) = {A ∩ V }v∈V (a).

We write lim
x→a,x∈A

f(x) instead of lim
F
f .

Definition 28 lim
x→a, x∈A

f(x) is a limit of f at a relative to A.

Theorem 21 LetX be a set and let {Yi}i∈I be a family of topological spaces.
Let fi : X → Yi.

A filter F on X converges to a ∈ X in the initial topology O on X ⇔
the filter base fi(F) converges to fi(a) ∀i ∈ I.
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Proof Necessary condition: The fi are continuous by Theorem 20.

Sufficient condition: Let w ∈ V (a). By definition of O∃ ∩J Ai ⊂ W

where a ∈ Ai = f−1(Oi), Oi open in Yi and J is a finite set.

Since fi(F) converges to fi(a) in Yi Oi ∈ fi(F) and f−1(Oi) ∈ F so
that ∩Jf

−1(Oi) ∈ F i.e. V (a) ⊂ F .

Corollary A filter F on a product space X =
∏

I

Xi converges to x ⇔ the

filter base pri(F) converges to xi ∀i ∈ I.
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