
Question

The power series scavenger hunt: for each of the power series given
below, determine the radius and interval of convergence.

1.
∑∞

n=0(−1)nxn/n!;

2.
∑∞

n=1 5
nxn/n2;

3.
∑∞

n=1 x
n/(n(n+ 1));

4.
∑∞

n=1(−1)nxn/
√
n;

5.
∑∞

n=0(−1)nx2n+1/(2n+ 1)!;

6.
∑∞

n=0 3
nxn/n!;

7.
∑∞

n=0 x
n/(1 + n2);

8.
∑∞

n=1(−1)n+1(x+ 1)n/n;

9.
∑∞

n=0 3
n(x+ 5)n/4n;

10.
∑∞

n=1(−1)n(x+ 1)2n+1/(n2 + 4);

11.
∑∞

n=0 π
n(x− 1)2n/(2n+ 1)!;

12.
∑∞

n=2 x
n/(ln(n))n;

13.
∑∞

n=0 3
nxn;

14.
∑∞

n=0 n!x
n/2n;

15.
∑∞

n=1(−2)nxn+1/(n+ 1);

16.
∑∞

n=1(−1)nx2n/(2n)!;

17.
∑∞

n=1(−1)nx3n/n3/2;

18.
∑∞

n=2(−1)n+1xn/(n ln2(n));

19.
∑∞

n=0(x− 3)n/2n;

20.
∑∞

n=1(−1)n(x− 4)n/(n+ 1)2;

21.
∑∞

n=0(2n+ 1)!(x− 2)n/n3;

22.
∑∞

n=1 ln(n)(x− 3)n/n;
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23.
∑∞

n=0(2x− 3)n/42n;

24.
∑∞

n=2(x− a)n/bn, where b > 0 is arbitrary.

25.
∑∞

n=0(n+ p)!xn/(n!(n+ q)!), where p, q ∈ N;

26.
∑∞

n=1 x
n−1/(n3n);

27.
∑∞

n=1(−1)n−1x2n−1/(2n− 1)!;

28.
∑∞

n=1 n!(x− a)n, where a ∈ R is arbitrary;

29.
∑∞

n=1 n(x− 1)n/(2n(3n− 1));

Answer

1. radius of convergence is ∞, interval of convergence is R: Apply
the ratio test and calculate:

lim
n→∞

∣

∣

∣

∣

∣

(−1)n+1xn+1/(n+ 1)!

(−1)nxn/n!

∣

∣

∣

∣

∣

= |x| lim
n→∞

1

n+ 1
= 0.

Hence, this series converges absolutely for all values of x (since this
limit is 0 for every value of x).

2. radius of convergence is 1
5
, interval of convergence is

[

−1
5
, 1

5

]

:

Apply the ratio test and calculate:

lim
n→∞

∣

∣

∣

∣

∣

5n+1xn+1/(n+ 1)2

5nxn/n2

∣

∣

∣

∣

∣

= |x| lim
n→∞

5n2

(n+ 1)2
= 5|x|.

Hence, this series converges absolutely for 5|x| < 1, that is for |x| < 1
5
,

and so the radius of convergence is 1
5
. We now need to check the

endpoints of the interval (− 1
5
, 1

5
):

At x = −1
5
, the series becomes

∑∞
n=1 5

n(−1/5)n/n2 =
∑∞

n=1(−1)n/n2,
which converges absolutely.

At x = 1
5
, the series becomes

∑∞
n=1 5

n(1/5)n/n2 =
∑∞

n=1 1/n
2, which

converges absolutely.

So the series converges absolutely for all x in the closed interval
[

−1
5
, 1

5

]

,
and diverges elsewhere.
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3. radius of convergence is 1, interval of convergence is [−1, 1]:
Apply the ratio test and calculate:

lim
n→∞

∣

∣

∣

∣

∣

xn+1/((n+ 1)(n+ 2))

xn/(n(n+ 1))

∣

∣

∣

∣

∣

= |x| lim
n→∞

n

n+ 2
= |x|.

Hence, this series converges absolutely for |x| < 1, and so the radius of
convergence is 1. We now need to check the endpoints of the interval
(−1, 1):

At x = −1, the series becomes ∑∞
n=1(−1)n/(n(n+1)), which converges

absolutely.

At x = 1, the series becomes
∑∞

n=1 1/(n(n+1)), which converges abso-
lutely.

So, the series converges absolutely for all x in the closed interval [−1, 1],
and diverges elsewhere.

4. radius of convergence is 1, interval of convergence is [−1, 1):
Apply the ratio test and calculate:

lim
n→∞

∣

∣

∣

∣

∣

(−1)n+1xn+1/
√
n+ 1

(−1)nxn/
√
n

∣

∣

∣

∣

∣

= |x| lim
n→∞

√

n

n+ 1
= |x|.

Hence, this series converges absolutely for |x| < 1, and so the radius of
convergence is 1. We now need to check the endpoints of the interval
(−1, 1):

At x = −1, the series becomes ∑∞
n=1(−1)n/

√
n, which converges condi-

tionally. (The alternating series test yields convergence, but this series
does not converge absolutely, by comparison to the harmonic series.)

At x = 1, the series becomes
∑∞

n=1 1/
√
n, which diverges.

So, the series converges absolutely for all x in the open interval (−1, 1),
converges conditionally at x = −1, and diverges elsewhere.

5. radius of convergence is ∞, interval of convergence is R: Apply
the ratio test and calculate:

lim
n→∞

∣

∣

∣

∣

∣

(−1)n+1x2(n+1)+1/(2(n+ 1) + 1)!

(−1)nx2n+1/(2n+ 1)!

∣

∣

∣

∣

∣

= |x|2 lim
n→∞

(2n+ 1)!

(2n+ 3)!

= |x|2 lim
n→∞

1

(2n+ 3)(2n+ 2)
= 0.
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Hence, this series converges absolutely for all values of x (since this
limit is 0 for every value of x).

6. radius of convergence is ∞, interval of convergence is R: Apply
the ratio test and calculate:

lim
n→∞

∣

∣

∣

∣

∣

3n+1xn+1/(n+ 1)!

3nxn/n!

∣

∣

∣

∣

∣

= |x| lim
n→∞

3

n+ 1
= 0.

Hence, this series converges absolutely for all values of x (since this
limit is 0 for every value of x).

7. radius of convergence is 1, interval of convergence is [−1, 1]:
Apply the ratio test and calculate:

lim
n→∞

∣

∣

∣

∣

∣

xn+1/(1 + (n+ 1)2)

xn/(1 + n2)

∣

∣

∣

∣

∣

= |x| lim
n→∞

1 + n2

2 + 2n+ n2
= |x|.

Hence, this series converges absolutely for |x| < 1, and so the radius of
convergence is 1. We now need to check the endpoints of the interval
(−1, 1):

At x = −1, the series becomes ∑∞
n=0(−1)n/(1 + n2), which converges

absolutely.

At x = 1, the series becomes
∑∞

n=0 1/(1 + n2), which converges abso-
lutely.

So, the series converges absolutely for all x in the closed interval [−1, 1],
and diverges elsewhere.

8. radius of convergence is 1, interval of convergence is (−2, 0]:
Apply the ratio test and calculate:

lim
n→∞

∣

∣

∣

∣

∣

(−1)(n+1)+1(x+ 1)n+1/(n+ 1)

(−1)n+1(x+ 1)n/n

∣

∣

∣

∣

∣

= |x+ 1| lim
n→∞

n

n+ 1
= |x+ 1|.

Hence, this series converges absolutely for |x+1| < 1, and so the radius
of convergence is 1. We now need to check the endpoints of the interval
(−2, 0):

At x = −2, the series becomes ∑∞
n=1(−1)n+1(−1)n/n = −∑∞

n=1 1/n,
which diverges, being a constant multiple of the harmonic series.
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At x = 0, the series becomes
∑∞

n=1(−1)n+1/n, which converges condi-
tionally, as it is the alternating harmonic series.

So, the series converges absolutely for all x in the open interval (−2, 0),
converges conditionally at x = 0, and diverges elsewhere.

9. radius of convergence is 4
3
, interval of convergence is (− 19

3
,−11

3
):

Apply the ratio test and calculate:

lim
n→∞

∣

∣

∣

∣

∣

3n+1(x+ 5)n+1/4n+1

3n(x+ 5)n/4n

∣

∣

∣

∣

∣

=
3

4
|x+ 5|.

Hence, this series converges absolutely for 3
4
|x + 5| < 1, that is for

|x + 5| < 4
3
, and so the radius of convergence is 4

3
. We now need to

check the endpoints of the interval (− 19
3
,−11

3
).

At x = −19
3
, the series becomes

∞
∑

n=0

3n
(

−19
3
+ 5

)n

4n
=

∞
∑

n=0

(−1)n,

which diverges (being, for instance, a divergent geometric series).

At x = −11
3
, the series becomes

∞
∑

n=0

3n
(

−11
3
+ 5

)n

4n
=

∞
∑

n=0

1,

which diverges (again being, for instance, a divergent geometric series).

So, the series converges absolutely for all x in the open interval (− 19
3
,−11

3
),

and diverges elsewhere.

10. radius of convergence is 1, interval of convergence is [−2, 0]:
Apply the ratio test and calculate:

lim
n→∞

∣

∣

∣

∣

∣

(−1)n+1(x+ 1)2(n+1)+1/((n+ 1)2 + 4)

(−1)n(x+ 1)2n+1/(n2 + 4)

∣

∣

∣

∣

∣

= |x+1|2 lim
n→∞

n2 + 4

n2 + 2n+ 5
= |x+1|2.

Hence, this series converges absolutely for |x + 1|2 < 1, that is for
|x + 1| < 1, and so the radius of convergence is 1. We now need to
check the endpoints of the interval (−2, 0).

5



At x = −2, the series becomes∑∞
n=1(−1)n(−1)2n+1/(n2+4) =

∑∞
n=1(−1)n+1/(n2+

4), which converges absolutely.

At x = 0, the series becomes
∑∞

n=1(−1)n/(n2 + 4), again which con-
verges absolutely.

So, the series converges absolutely for all x in the closed interval [−2, 0],
and diverges elsewhere.

11. radius of convergence is ∞, interval of convergence is R: Apply
the ratio test and calculate:

lim
n→∞

∣

∣

∣

∣

∣

πn+1(x− 1)2(n+1)/(2(n+ 1) + 1)!

πn(x− 1)2n/(2n+ 1)!

∣

∣

∣

∣

∣

= |x−1|2 lim
n→∞

π

(2n+ 2)(2n+ 3)
= 0.

Hence, this series converges absolutely for all values of x (since this
limit is 0 for every value of x).

12. radius of convergence is ∞, interval of convergence is R: This
time, since the coefficients are nth powers, we apply the root test and
calculate:

lim
n→∞

∣

∣

∣

∣

∣

xn

(ln(n))n

∣

∣

∣

∣

∣

1/n

= |x| lim
n→∞

1

ln(n)
= 0.

Hence, this series converges absolutely for all values of x (since this
limit is 0 for every value of x).

13. radius of convergence is 1
3
, interval of convergence is (− 1

3
, 1

3
):

Apply the ratio test and calculate:

lim
n→∞

∣

∣

∣

∣

∣

3n+1xn+1

3nxn

∣

∣

∣

∣

∣

= 3|x|.

Hence, this series converges absolutely for 3|x| < 1, that is |x| < 1
3
, and

so the radius of convergence is 1
3
. We now need to check the endpoints

of the interval (− 1
3
, 1

3
).

At x = −1
3
, the series becomes

∞
∑

n=0

3n
(

−1
3

)n

=
∞
∑

n=0

(−1)n,

which diverges (being, for instance, a divergent geometric series).
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At x = 1
3
, the series becomes

∞
∑

n=0

3n
(

1

3

)n

=
∞
∑

n=0

1,

which diverges (again being, for instance, a divergent geometric series).

So, the series converges absolutely for all x in the open interval (− 1
3
, 1

3
),

and diverges elsewhere.

14. radius of convergence is 0, interval of convergence is {0}: Apply
the ratio test and calculate:

lim
n→∞

∣

∣

∣

∣

∣

(n+ 1)!xn+1/2n+1

n!xn/2n

∣

∣

∣

∣

∣

= |x| lim
n→∞

n+ 1

2
=∞.

Hence, this series converges only for x = 0 and diverges elsewhere.

15. radius of convergence is 1
2
, interval of convergence is (− 1

2
, 1

2
]:

Apply the ratio test and calculate:

lim
n→∞

∣

∣

∣

∣

∣

(−2)n+1x(n+1)+1/((n+ 1) + 1)

(−2)nxn+1/(n+ 1)

∣

∣

∣

∣

∣

= |x|2(n+ 1)
n+ 2

= 2|x|.

Hence, this series converges absolutely for 2|x| < 1, that is |x| < 1
2
, and

so the radius of convergence is 1
2
. We now need to check the endpoints

of the interval (− 1
2
, 1

2
).

At x = −1
2
, the series becomes

∞
∑

n=1

(−2)n
(

−1
2

)n+1

n+ 1
= −1

2

∞
∑

n=1

1

n+ 1
,

which diverges, as it is a constant multiple of the harmonic series.

At x = 1
2
, the series becomes

∞
∑

n=1

(−2)n
(

1
2

)n+1

n+ 1
=
1

2

∞
∑

n=1

(−1)n
n+ 1

,

which converges, as it is a constant multiple of the alternating harmonic
series.

So, the series converges absolutely for all x in the open interval (− 1
2
, 1

2
),

converges conditionally at x = 1
2
, and diverges elsewhere.
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16. radius of convergence is ∞, interval of convergence is R: Apply
the ratio test and calculate:

lim
n→∞

∣

∣

∣

∣

∣

(−1)n+1x2(n+1)/(2(n+ 1))!

(−1)nx2n/(2n)!

∣

∣

∣

∣

∣

= |x|2 lim
n→∞

1

(2n+ 2)(2n+ 1)
= 0.

Hence, this series converges absolutely for all values of x (since this
limit is 0 for every value of x).

17. radius of convergence is 1, interval of convergence is [−1, 1]:
Apply the ratio test and calculate:

lim
n→∞

∣

∣

∣

∣

∣

(−1)n+1x3(n+1)/(n+ 1)3/2

(−1)nx3n/n3/2

∣

∣

∣

∣

∣

= |x|3 lim
n→∞

n3/2

(n+ 1)3/2
= |x|3.

Hence, this series converges absolutely for |x|3 < 1, that is |x| < 1, and
so the radius of convergence is 1. We now need to check the endpoints
of the interval (−1, 1).

At x = −1, the series becomes ∑∞
n=1(−1)n(−1)n/n3/2 =

∑∞
n=1 1/n

3/2,
which converges, by Note 1.

At x = 1, the series becomes
∑∞

n=1(−1)n/n3/2, which converges abso-
lutely, by Note 1.

So, the series converges absolutely for all x in the closed interval [−1, 1],
and diverges elsewhere.

18. radius of convergence is 1, interval of convergence is [−1, 1]:
Apply the ratio test and calculate:

lim
n→∞

∣

∣

∣

∣

∣

(−1)(n+1)+1xn+1/((n+ 1) ln2(n+ 1))

(−1)n+1xn/(n ln2(n))

∣

∣

∣

∣

∣

= |x| lim
n→∞

n ln2(n)

(n+ 1) ln2(n+ 1)
= |x|.

Hence, this series converges absolutely for |x| < 1, and so the radius of
convergence is 1. We now need to check the endpoints of the interval
(−1, 1).

At x = −1, the series becomes∑∞
n=2(−1)n+1(−1)n/(n ln2(n)) = −∑∞

n=2 1/(n ln
2(n)),

which converges by the integral test: take f(x) = 1/(x ln2(x)). Then,

f ′(x) =
−(ln2(x) + 2 ln(x))

x2 ln4(x)
< 0
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for x ≥ 2, and so f(x) is decreasing. Then, we evaluate
∫ ∞

2
f(x)dx = lim

M→∞

∫ M

2

1

x ln2(x)
dx

= lim
M→∞

−1
ln(x)

∣

∣

∣

M
2

= lim
M→∞

(

−1
ln(M)

+
1

ln(2)

)

=
1

ln(2)
,

which converges. Hence, by the integral test, the series converges.

At x = 1, the series becomes
∑∞

n=2(−1)n+1/(n ln2(n)), which converges
absolutely by the argument just given.

So, the series converges absolutely for all x in the closed interval [−1, 1],
and diverges elsewhere.

19. radius of convergence is 2, interval of convergence is (1, 5):
Apply the ratio test and calculate:

lim
n→∞

∣

∣

∣

∣

∣

(x− 3)n+1/2n+1

(x− 3)n/2n

∣

∣

∣

∣

∣

=
1

2
|x− 3|.

Hence, this series converges absolutely for 1
2
|x−3| < 1, that is |x−3| <

2, and so the radius of convergence is 2. We now need to check the
endpoints of the interval (1, 5).

At x = 1, the series becomes
∑∞

n=0(−2)n/2n =
∑∞

n=0(−1)n, which
diverges, being for instance a divergent geometric series.

At x = 5, the series becomes
∑∞

n=0 1, which diverges, again being for
instance a divergent geometric series.

So, the series converges absolutely for all x in the open interval (1, 5),
and diverges elsewhere.

20. radius of convergence is 1, interval of convergence is [3, 5]: Ap-
ply the ratio test and calculate:

lim
n→∞

∣

∣

∣

∣

∣

(−1)n+1(x− 4)n+1/((n+ 1) + 1)2

(−1)n(x− 4)n/(n+ 1)2

∣

∣

∣

∣

∣

= |x−4| lim
n→∞

(n+ 1)2

(n+ 2)2
= |x−4|.

Hence, this series converges absolutely for |x−4| < 1, and so the radius
of convergence is 1. We now need to check the endpoints of the interval
(3, 5).
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At x = 3, the series becomes
∑∞

n=1(−1)n(−1)n/(n+1)2 =
∑∞

n=1 1/(n+
1)2, which converges by Note 1.

At x = 5, the series becomes
∑∞

n=1(−1)n/(n + 1)2, which converges
absolutely, again by Note 1.

So, the series converges absolutely for all x in the closed interval [3, 5],
and diverges elsewhere.

21. radius of convergence is 0, interval of convergence is {2}: Apply
the ratio test and calculate:

lim
n→∞

∣

∣

∣

∣

∣

(2(n+ 1) + 1)! (x− 2)n+1/(n+ 1)3

(2n+ 1)! (x− 2)n/n3

∣

∣

∣

∣

∣

= |x−2| lim
n→∞

(2n+ 3)! n3

(2n+ 1)! (n+ 1)3
=∞

for all x 6= 2. Hence, the series converges only for x = 2.

22. radius of convergence is 1, interval of convergence is [2, 4):
Apply the ratio test and calculate:

lim
n→∞

∣

∣

∣

∣

∣

ln(n+ 1)(x− 3)n+1/(n+ 1)

ln(n)(x− 3)n/n

∣

∣

∣

∣

∣

= |x− 3| n ln(n+ 1)
(n+ 1) ln(n)

= |x− 3|.

Hence, this series converges absolutely for |x−3| < 1, and so the radius
of convergence is 1. We now need to check the endpoints of the interval
(2, 4).

At x = 2, the series becomes
∑∞

n=1 ln(n)(−1)n/n, which converges by
the alternating series test (but does not converge absolutely).

At x = 4, the series becomes
∑∞

n=1 ln(n)/n, which diverges by the first
comparison test, since ln(n)/n > 1/n for n ≥ 3 and the harmonic series
∑∞

n=1 1/n diverges.

So, the series converges absolutely for all x in the open interval (2, 4),
converges conditionally at x = 2, and diverges elsewhere.

23. radius of convergence is 8, interval of convergence is (− 13
2
, 19

2
):

Apply the ratio test and calculate:

lim
n→∞

∣

∣

∣

∣

∣

(2x− 3)n+1/42(n+1)

(2x− 3)n/42n

∣

∣

∣

∣

∣

=
1

16
|2x− 3| = 1

8

∣

∣

∣

∣

x− 3
2

∣

∣

∣

∣

.

Hence, this series converges absolutely for 1
8

∣

∣

∣x− 3
2

∣

∣

∣ < 1, that is for
∣

∣

∣x− 3
2

∣

∣

∣ < 8, and so the radius of convergence is 8. We now need to

check the endpoints of the interval (− 13
2
, 19

2
).
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At x = −13
2
, the series becomes

∑∞
n=0(2(−13/2)−3)n/42n =

∑∞
n=0(−1)n,

which diverges.

At x = 19
2
, the series becomes

∑∞
n=0(2(19/2)−3)n/42n =

∑∞
n=0 1, which

diverges.

So, the series converges absolutely for all x in the open interval (− 13
2
, 19

2
),

and diverges elsewhere.

24. radius of convergence is b, interval of convergence is (a−b, a+b):
Apply the ratio test and calculate:

lim
n→∞

∣

∣

∣

∣

∣

(x− a)n+1/bn+1

(x− a)n/bn

∣

∣

∣

∣

∣

=
1

b
|x− a|.

Hence, this series converges absolutely for 1
b
|x − a| < 1, that is for

|x − a| < b, and so the radius of convergence is b. We now need to
check the endpoints of the interval (a− b, a+ b).

At x = a − b, the series becomes
∑∞

n=2(a − b − a)n/bn =
∑∞

n=2(−1)n,
which diverges.

At x = a+ b, the series becomes
∑∞

n=2(a+ b− a)n/bn =
∑∞

n=2 1, which
diverges.

So, the series converges absolutely for all x in the open interval (a −
b, a + b), and diverges elsewhere. (Note that the previous series is a
specific example of this general phenomenon, with a = 3

2
and b = 8.)

25. radius of convergence is ∞, interval of convergence is R: Apply
the ratio test and calculate:

lim
n→∞

∣

∣

∣

∣

∣

((n+ 1) + p)!xn+1/((n+ 1)!((n+ 1) + q)!)

(n+ p)!xn/(n!(n+ q)!)

∣

∣

∣

∣

∣

= |x| lim
n→∞

n+ 1 + p

(n+ 1)(n+ 1 + q)
= 0.

Hence, this series converges absolutely for all values of x (since this
limit is 0 for every value of x).

26. radius of convergence is 3, interval of convergence is [−3, 3):
Apply the ratio test and calculate:

lim
n→∞

∣

∣

∣

∣

∣

x(n+1)−1/((n+ 1)3n+1)

xn−1/(n3n)

∣

∣

∣

∣

∣

= |x| lim
n→∞

n

3(n+ 1)
=
1

3
|x|.
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Hence, this series converges absolutely for 1
3
|x| < 1, that is for |x| < 3,

and so the radius of convergence is 3. We now need to check the
endpoints of the interval (−3, 3).

At x = −3, the series becomes ∑∞
n=1(−3)n−1/(n3n) = 1

3

∑∞
n=1

(−1)n−1

n
,

which converges conditionally, as it is a constant multiple of the alter-
nating harmonic series.

At x = 3, the series becomes
∑∞

n=1 3
n−1/(n3n) = 1

3

∑∞
n=1

1
n
, which di-

verges, as it is a constant multiple of the harmonic series.

So, the series converges absolutely for all x in the open interval (−3, 3),
converges conditionally at x = −3, and diverges elsewhere.

27. radius of convergence is ∞, interval of convergence is R: Apply
the ratio test and calculate:

lim
n→∞

∣

∣

∣

∣

∣

(−1)(n+1)−1x2(n+1)−1/(2(n+ 1)− 1)!
(−1)n−1x2n−1/(2n− 1)!

∣

∣

∣

∣

∣

= |x|2 lim
n→∞

1

2n(2n+ 1)
= 0.

Hence, this series converges absolutely for all values of x (since this
limit is 0 for every value of x).

28. radius of convergence is 0, interval of convergence is {a}: Apply
the ratio test and calculate:

lim
n→∞

∣

∣

∣

∣

∣

(n+ 1)!(x− a)n+1

n!(x− a)n

∣

∣

∣

∣

∣

= |x− a| lim
n→∞

(n+ 1) =∞

for all x 6= a. Hence, the series converges only for x = a.

29. radius of convergence is 2, interval of convergence is (−1, 3):
Apply the ratio test and calculate:

lim
n→∞

∣

∣

∣

∣

∣

(n+ 1)(x− 1)n+1/(2n+1(3(n+ 1)− 1))
n(x− 1)n/(2n(3n− 1))

∣

∣

∣

∣

∣

= |x−1| lim
n→∞

(n+ 1)(3n− 1)
2n(3n+ 2)

=
1

2
|x−1|.

Hence, this series converges absolutely for 1
2
|x − 1| < 1, that is for

|x − 1| < 2, and so the radius of convergence is 2. We now need to
check the endpoints of the interval (−1, 3).

At x = −1, the series becomes ∑∞
n=1 n(−1 − 1)n/(2n(3n − 1)) =

∑∞
n=1(−1)nn/(3n − 1), which diverges by the nth term test for diver-

gence, as limn→∞
n

3n−1
= 1

3
, and so limn→∞

(−1)nn
3n−1

does not exist.
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At x = 3, the series becomes
∑∞

n=1 n(3−1)n/(2n(3n−1)) = ∑∞
n=1 n/(3n−

1), which again diverges by the nth term test for divergence.

So, the series converges absolutely for all x in the open interval (−1, 3),
and diverges elsewhere.

Note 1.
The series

∑∞
n=1

1
ns converges if and only if s > 1.

For s = 1, this series is called the harmonic series, and we can prove
directly that it diverges. Note that 1

3
+ 1

4
> 1

2
, that 1

5
+ · · · + 1

8
> 41

8
= 1

2
,

and in general that

1

2k−1 + 1
+

1

2k−1 + 2
+ · · ·+ 1

2k
> 2k−1 1

2k
=
1

2
.

Hence, the (2k)th partial sum S2k satisfies S2k > 1+k 1
2
. Since the terms in the

harmonic series are all positive, the sequence of partial sums is monotonically
increasing, and by the calculation done the sequence of partial sums is un-
bounded, and so the sequence of partial sums diverges. Hence, the harmonic
series diverges.
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