
COMP3227 REST Coursework 2023/24

Key Information
Deadline: 06/12/23
https://handin.ecs.soton.ac.uk/handin/2324/COMP3227/1
The usual late penalties apply for late handins.
Lecturers: Heather Packer, Richard Gomer, Nicholas Gibbins
Value: 50% of the marks available for this module.

This coursework is to be completed individually.

Setting the Scene
You’ve just started your new job as a Web Architect at the IT department in the university. Your
predecessor started to build a REST API to allow people to view details about the university’s
faculties, schools and departments, and the degrees and modules that they run, however it was
left unfinished and did not start any API documentation.

Before they left for a meeting, your boss hurriedly scribbled this URI on a piece of paper:
http://comp3227.ecs.soton.ac.uk/modules/15

Try to GET this, as a starting point. (You must connect to the ECS Virtual Private Network to
access it.)

Part 1
Your first task is to browse and document the existing University Faculty API. You have one
starting URI, but use what you have learned about HTTP and REST to explore the API and
make note of what you find. Your colleagues recommend that you use an HTTP tool like
Postman, RESTClient or cURL to do this.

Some questions that might help guide your exploration. You should include answers to these in
your documentation:

● What methods can you use on each URI?
● What format can URIs take?
● What other URIs are possible for this service?

You must:
1. Add your choice of a new module to the course of your choice to the University

Faculty API (figured out from the URI above), so that it appears in the list. Pick a module that
does not already exist.



2.Write an HTML5 page to document how the API works. You should write about each
endpoint in the API that you find. You must have one page for the whole API, ordered and split
into sections as appropriate. It is expected that the documentation for an API endpoint will
include:

a. The URI template.
b. What each parameter in the URI means, and what types of value it takes.
c. Which HTTP methods can be used on the resource.
d. Provide example output for each type of resource.
e. Provide example input for each interaction that modifies a resource.

3.Write a critique of the REST API you’ve documented as a RESTful interface

Note: We are assessing your ability to suitably structure an HTML5 document to represent the
data, and to use some basic CSS to make the document readable and navigable, if you wish
you may also use JavaScript but it is not required. However, you are NOT allowed to use any
frameworks to write your HTML5 or CSS, this means that you can not use frameworks
like Bootstrap, Angular, or Vue. And your artistic ability is not being assessed!

You will then write a critique of the existing API as a RESTful interface. Alongside the critique
you may include potential changes to the existing endpoints and/or data structures to support
the RESTful extension detailed in Part 2.

Part 2
Your boss now wants you to design a RESTful extension to the API which enables students
and staff to make announcements relating to faculties, courses, courses by year group, and
module, each announcement can be for either (i) staff and students, (ii) students, and (iii) staff.
And staff can manage any announcements made by staff and students. Please note that you
will NOT build your designed API. The system should handle:

● Adding an announcement to the relevant resource
● Editing and deleting announcements
● Reporting of misuse in the system

It is required that the following will be supported:
Staff can:

● Edit or remove announcements;
● Adding an announcement to a relevant resource.

Students can:
● If they are reported of misuse, the student’s right to post an announcement will be

revoked permanently (unless successfully refuted in an appeals process);
● Adding an announcement to a relevant resource maximum number of 10 per month to

prevent spamming;
● Start an appeals process.

Staff and Students can:
● Adding an announcement to a relevant resource;



● Report misuse in the system.

While the above restrictions describe the possible actions, consider what will be handled at the
API level, what will be represented in the data structures, and what is appropriate to happen
behind the scenes on a server. You may include any additional support in your design for the
needs of students and staff, which you see fit.

You must:
1. Plan each of the steps that go into the announcement process. Define URIs to identify
the required additional resources and the methods that interact with them to perform the
process and move through the states.
2. Draw a single state diagram that shows a user’s (both staff and students) interactions
with the API. (like the one in Figure 4.1 of REST in Practice).
3. You must provide a structured representation of all your new API endpoints.

Please document your extension to the API using the Swagger framework (https://swagger.io/),
making sure you document:

a. The URI template.
b. What each parameter in the URI means, and what types of value it takes.
c. Which HTTP methods can be used on the resource?
d. Provide example output for each type of resource.
e. Provide example input for each interaction that modifies a resource.

Submission
You will be expected to submit the following:

● For Part 1:
○ Evidence of submitting a new module (screenshots or a text log of request and
response).
○ 1 html file named index.html and 1 accompanying css file named style.css,
documenting the API in the existing system.
○ 1 txt file named critique.txt containing a critique of existing API as a RESTful
interface

● For Part 2:
○ A state diagram named state.pdf
○ 1 yaml file named extension.yaml containing the Swagger documentation,

detailing your designed extensions to the API to add the ability to make announcements.

Mark Scheme

Section Notes Marks



Presentation of documentation

LO: Use common Web
technologies

Use of appropriate HTML5 and CSS to
present the documentation
professionally

12%

API discovery and documentation

LO: Identify the key
characteristics of the Web
Architecture

Coverage of API endpoints and
documentation of endpoints with
demonstration of use (sample output)

Critique of existing API as a RESTful
interface

23%

10%

Design of extension to the API

LO: Design RESTful Web
applications, Apply the
Representational State Transfer
(REST) architectural style to Web
application design

State diagram
Appropriate design of URIs
Appropriate use of HTTP methods
Application of HATEOAS Richardsons
maturity level of API design

55%

Total: 100%


