Question

A body falling from rest at t=0, in a medium where the resistance is proportional to the velocity obeys the equation

$$\frac{dv}{dt} = g - kv$$

where k is constant. Show that eventually the body achieves a constant (terminal) velocity. If this terminal velocity is V, find, in terms of k, the time that elapses before a body falling from rest attains a velocity $\frac{V}{2}$.

Answer
$$\frac{dv}{dt} = g - kv$$
 Variables separable
$$\int \frac{dv}{g - kv} = \int dt \Rightarrow -\frac{1}{k} \ln(g - kv) = t + c$$
 What is c ? Particle falls from rest $(v = 0)$ at $t = 0$. Thus, $-\frac{1}{k} \ln(g - 0) = 0 + c \Rightarrow -\frac{1}{k} \ln g = c$ Thus
$$-\frac{1}{k} \ln(g - kv) = t - \frac{1}{k} \ln g$$
 or
$$\frac{1}{k} \ln g - \frac{1}{k} \ln(g - kv) = t$$

$$\Rightarrow \qquad \frac{1}{k} \ln \left(\frac{g}{g - kv}\right) = t$$
 or
$$\frac{g}{g - kv} = e^{kt}$$
 or
$$\frac{g}{g - kv} = g - kv$$

$$\Rightarrow v = \frac{g}{k}(1 - e^{-kt})$$
 Now as $t \to \infty$, $v \to \frac{g}{k}(1 - e^{-\infty})$ But $e^{-\infty} = 0 \Rightarrow v \to \frac{g}{k}$ the terminal velocity Thus $V = \frac{g}{k}$.

Now when
$$v = \frac{V}{2}$$
 we have

Now when
$$v = \frac{V}{2}$$
 we have
$$\frac{V}{2} = \frac{g}{k}(-e^{-kt})$$
or
$$\frac{g}{2k} = \frac{g}{k}(1 - e^{-kt})$$

$$\Rightarrow \frac{1}{2} = 1 - e^{-kt}$$

$$\Rightarrow e^{-kt} = \frac{1}{2}$$

$$\Rightarrow -kt = \ln\left(\frac{1}{2}\right)$$

$$\Rightarrow kt = \ln 2$$

$$\Rightarrow t = \frac{1}{k}\ln 2$$