THEORY OF NUMBERS
ARITHMETIC FUNCTIONS

Functions defined on the set of natural numbers.
Definition f(n) is multiplicative < f(uv) = f(u).f(v) whenever (uv) = 1.

Theorem If f(n) is multiplicative then F'(n) = 34, f(d) is also multiplica-
tive.

Proof Let (uv) =1

F(uw) = > f(a)

duv

= > ) fldidy)

di|u da|u

= Y f(d)Y f(do)

dilu da|v

= F(u)F(v)

For every divisor of uv3 unique dy, dy such that dy|u ds|v dids = 1.

Definition
din)=>1
dn
o(n)=>d
din

«

d(n) and o(n) are both multiplicative. If p is prime the divisors of p
are 1,p,p?, ..., p* therefore

dip*) = a+1
pa+1_1
p—1

d(n) = ﬁ(ai—l—l)
o(n) = ﬁ(i)

pi—1

-
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Example For every € > 0, d(n) = O(n°).
Let D(x) = >,<, d(n) for x > 1.

Theorem D(z) =xzlogx+(2j—1)z+0O (:L‘%) for large =, where j is Euler’s
constant.

Proof We shall first proof that

Now d(”) - Zu, uln 1= Zu,v, uv=n 1. So

D(z) = o1

u, v uv<x

= > 1+ > 1

U, v ugx%uvgx u, v u>x% wv<x
X i 1
= X [+ = {[]- 1)
ugx% vgx%
x 172
=22 |, — |]
u<r?2
S (:’5+0(1)) — (2 +0(1))’
1 \Nn
n<x?2
= 2z ) l%—O(x%—x+0(x%)
ngm% "
= 2x<logw%—|—j—|—0<%)>—x+0(m%
€2

= zlogz+ (2 — 1)z + 0O (a:%)

Perfect Numbers A perfect number is one for which o(n) = 2n

Theorem (Euclid-Euler) If p is a prime of the from 2" — 1 then then
number 2"~ p is perfect and conversely every even perfect number is of
this form.

Proof Suppose



o(N) = o(2"'p) =0 (2" )o(p)
= (2,—-1)(1+p) =p2"=2N

Suppose N is an even perfect number. Write N = 2" 1y where u is odd,
so that n > 2. Then 2"u = 2N = o(N) = (2" 'u) = 0(2" Yo(u) =
(2" = 1o (u)

Le. o(u) = 2% =u+ 3%

u
2n—1

is thus an integer, and it divides wu.

o(u) = sum of all divisors of u

= w4+ one divisor of u

and so this is the only other divisor of u, therefore u = 2" — 1 and u
must be prime.

A number is said to be squarefree if it is not divisible by any square
> 1.

Moebius function

Moéebius inversion formula We define (1) =1 and if n > 1

(n) = (—=1)" if n is the product of r distinct primes
gy = 0 if n is not squarefree

It is easy to see that p is multiplicative.

Theorem

Sua={ g 5

din
Proof The case n =1 is trivial. If n > 1 write n = pi* ... p2"

Sopld)y =" plptt . upd)

dln d\p(fl d|py™

ould) = 1+ pp) +p®®) + ... 5

dlp™
= 1—-140+...40=0



Alternatively

> owd = Y pd)

dlpt..prT dp1...pr
= 1+ (=) 4+ co(=1)* 4+ ... ¢ (=1)"
= 1-1)"=0

Theorem Given g(n) defined on the natural numbers define f(n) = 34, g(d)
then g(n) = g p(d)f (5) = Sap i (4) £(d)

Proof
d_pd)f (g) = D uld) > g(t)
dn din t|%
= > 9(t) > p(d)
tln n
d| 2
1 ift=n
~ 0 otherwise
= g(n)
Theorem Suppose G(z) is defined for # > 1. Define F'(z) = 3, G (%) x>
1
Then G(z) = X, <, u(n)F (%)
Proof
S ur(5) = Zum T 6 ()
= 3G(2) X )
usz <u> nlu
= G(x)

Corollary [z] =3, <, 1 therefore 1 =3, -, u(n) {5}

n<x

Euler’s function



Theorem (i) >4, ¢(d) =n
(if) % = Can "
(iii) ¢(n) is multiplicative.

(iv) 2% =1T,, (1 - %)

Proof (i) Consider the set 1,2,...n and divide into classes Cy where r €
Cq < (r,n) =d. C4 is empty unless D|n.
Suppose D|n then Cy consists of those r among 1,2...n for which

(r,n) =d.
Write r =dr' n=dn' (v, n') =1
Cy consists of those 7' among 1,2,...% such that (7", %) =1

therefore C; contains exactly ¢ (%) elements. Therefore

Z¢(d>=§¢(g):n

din

(ii) n = >4, #(d) therefore ¢(n) = 34, pu(d)% therefore @ = Ydjn @.

(iii) p(d) is multiplicative and d is multiplicative,

therefore @ is multiplicative,
#(n)

therefore =~ is multiplicative,

n is multiplicative therefore ¢(n) is multiplicative.

(iv) ¢(1) =1
B b)) ()
n dp‘flz:p?’“ d dl%;1 d d|pR" d
ud) _ ( i)
d%;l d D1
Therefore ]
¢(n) = ann 1— ’
The Zeta function .
((s)=>_n"*
n=1



Theorem

—1
1
Proof [], (1 - 1?)

1 1 1 1 1 |
=(l+g+gp+)(Q+g+gr+t.) A+ +a3+)
=2 n’

((s) is a special case of a Dirichlet series Y ¢,¢™*

We have the following useful result concerning product of Dirichlet
series.

0o [e's) 0o
DOTITRD SURE P
u=1 v=1 n=1

where Cn = Zu, v uv=n aubv = Zu\n anb%

In particular

oo oo
¢(s) Z T Z an”?
u=1 n=1

/
where ¢, = >, @y

Theorem p(n) is the coefficient of n=* in ﬁ

d(n) is the coefficient of n™* in (*(s)
o(n) is the coefficient of n=% in ((s){(s — 1)

¢(n) is the coefficient of n™* in C(Z(;)l)
Proof . .
() S plmpn = 3
n=1 n=1
;o )1 n=1
Therefore

((s) f: u(nyu~ = 1

These calculations are only formal, and we must verify them in some
other way.
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C(s)C(s = 1) =Xty en™™, ¢, =Yg d = o(n)
The others are proved in similar ways.

Now consider Y2, o(n)n™* = ((s)((s — 1).
Multiply by ﬁ

> (@ (5))nr =cls =)= X nn

n=1 dln n=1

Therefore

>ne () =

This correspond to a Moebius inversion, and whilst the calculations are
onlt formal, they are useful to discover relations between the various
arithmetic functions.

Example Let Q(z)= the number of squarefree numbers not exceeding x.

Now

d n=1%un)n~" = (1—|— %) <1+ %) (1+ é)




¢(s)
¢(2s)

— Zaszu st

a=1
u(b)) n-
a, b ab?=n

.S (
-y (Z u(b)) n

n=1

n=1 \b2|n
Equating coefficients
lp(n)| =3 b2|n:u(b)'

The calculations are only formal and so we must prove this relation.

Suppose k? is the largest square divisor of n, n = n'k? where n’ is
squarefree then

1 ifk=1
b B2n (b)) =32, blk p(b) = 0 otherwise

k =1 < n is squarefree. So

Q) = > ulb)

2
bgw% b
Now
,u(b) 1 0 dt 1
— | < — < — =
1 b? o 1 b2 — x%—l t2 O<I ’
b>x2 b>x?2

Therefore Q(z) = 2352, 40 O (x

#(b _ 1
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(2 -5 k-
Therefore Q(z) = %x + 0 <g;%)

Every large integer can be represented as the sum of two squarefree
numbers.

Example on Moebius inversion Pick a, b at random. What is the prob-
1<a<z
ability that (a, b) = 1?7 Define N(z) l<b<uz (a, b) =1

Total number of point = [x]?

N(z)
[=]?

Divide the points (a, b),1 < a < x 1 < b < z into classes C,, where
(a, b) € C), & (a,b) =n

Each point goes into just one class therefore [z]* =3, <, ||

Probability = lim, .,

Write a =na’ b=nb then 1 <a' <2 1<V <2 (a,0) =1
Therefore |C,,| = N (%)
Therefore [z]? = 3,<, N (%)
Using the Moebius inversion formula we get
12
N@) = X |2
n<x n
x72 x 2 g2 x
[n] (n+0( )> n2+0<n)+ (1)
1
Therefore N(z) = 2*)_ ,u(r;) +0(z ) —
n<x n ngxn
= > M(? + O(zlog x)
n<x n
5 6
= T + O(z log )
N S22+ 0(x1
Therefore lim (z) = lim T "+ Olzlogz)
T—00 [Z‘]Q T—00 x2
6
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