
Question
Write the following system of simultaneous equations in matrix form and

calculate the determinant as a function of a and b.

x+ y + z = 3, x+ 2y + 2z = 5, x+ ay + bz = 3.

For each of the cases given below decide whether the equations have a unique
solution, no solutions or infinitely many solutions; find the solutions where
possible:

(i) a = b = 1;

(ii) a = 1 and b = 1;

(iii) a 6= 1 and b = 1;

(iv) a = b 6= 1;

(v) 1 6= a 6= b 6= 1.

Answer
In matrix form (Ax = b):
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(Expanding determinant along second row)

= b− a.

To solve the equations, take augmented matrix and reduce to upper tri-
angular form using row operations.
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So the equations reduce to:
x+ y + z = 3

y + z = 2
(b− a)z = 2− 2a
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(i) a = b = 1. det(A) = b− a = 1− 1 = 0.

So either no solutions or an infinite number of solutions.

Equations become:
x+ y + z = 3

y + z = 2
0 = 0


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Let z = α, so y = 2 − α and x = 3 − y − z = 3 − (2 − α) − α = 1.
Infinitely many solutions: (x, y, z) = (1, 2− α, α).

(ii) a = 1, b 6= 1. det(A) = b− 1 6= 0. So a unique solution.

Equations become:
x+ y + z = 3

y + z = 2
(b− 1)z = 0


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z = 0 (since b 6= 1)
y = 2
x = 2

Hence the unique solution: (x, y, z) = (1, 2, 0).

(iii) a 6= 1, b = 1. det(A) = 1− a 6= 0, so a unique solution.

Equations become:
x+ y + z = 3

y + z = 2
(1− a)z = 2− 2a
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z =
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1− a
= 2 (1− a 6= 0)

y = 0
x = 1

so a unique solution (x, y, z) = (1, 0, 2).

(iv) a = b 6= 1. det(A) = b− a = 0.

So either no solutions or an infinite number of solutions.

Equations become:
x+ y + z = 3

y + z = 2
0 = 2− 2a











since a 6= 1, 0 = 2− 2a 6= 0 which is a contradiction.

So equations are inconsistent and have no solutions.

(v) 1 6= a 6= b 6= 1. det(A) = b− a 6= 0, so a unique solution.

Equations become:
x+ y + z = 3

y + z = 2
(b− a)z = 2− 2a


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so a unique solution (x, y, z) = (1,
2b− 2

b− a
,
2− 2a

b− a
).
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