


Peer-to-Peer Data Management
COMP3211 Advanced Databases

Dr Nicholas Gibbins – nmg@ecs.soton.ac.uk

2020-2021



3

Peer-to-Peer Characteristics
Autonomy

Query Expressiveness

Efficiency

Quality of Service

Fault-Tolerance

Security

3



4

Peer-to-Peer Characteristics
Autonomy

Query Expressiveness

Efficiency

Quality of Service

Fault-Tolerance

Security

• Peers may join or leave at any time 
without restriction

• Peers control the data they store

• Peers control which other peers store 
their data

4



5

Peer-to-Peer Characteristics
Autonomy

Query Expressiveness

Efficiency

Quality of Service

Fault-Tolerance

Security

• User may describe desired data at 
appropriate level of detail
• Key lookup

• Keyword search with ranking

• Structured queries

5



6

Peer-to-Peer Characteristics
Autonomy

Query Expressiveness

Efficiency

Quality of Service

Fault-Tolerance

Security

• Efficient use of resources
• Lower cost

• Higher throughput

6



7

Peer-to-Peer Characteristics
Autonomy

Query Expressiveness

Efficiency

Quality of Service

Fault-Tolerance

Security

• User-perceived:
• Completeness of results

• Data consistency

• Data availability

• Query response time

7



8

Peer-to-Peer Characteristics
Autonomy

Query Expressiveness

Efficiency

Quality of Service

Fault-Tolerance

Security

• Efficiency and quality maintained despite 
peer failures

• Requires replication

8



9

Peer-to-Peer Characteristics
Autonomy

Query Expressiveness

Efficiency

Quality of Service

Fault-Tolerance

Security

• Cannot rely on trusted servers!

• Access controls

9



10

Reference Peer-to-Peer Architecture

10

Peer

Local
Data

N
et

w
o
rk

 I
n
te

rf
ac

e

Query
Manager

Q
u
er

y 
an

d
 

M
an

ag
em

en
t 

In
te

rf
ac

e

Peer

Peer

Peer



11

Data Management Issues

11

Data Location: peers must be able to refer to and locate data stored by other peers

Query Processing: given a query, discover peers that contribute relevant data and 
efficiently execute the query

Data Integration: access data despite heterogeneous schemas

Data Consistency: maintain consistency on duplicate data when replicating or caching



12

Overlay Networks

12

Peers connect to each other via an overlay network
• Usually has different topology to underlying physical network

• Concentrate on optimising communication over overlay network

Two common distinctions:
• Pure versus hybrid

• Structured versus unstructured



13

Pure versus Hybrid Networks

13

Pure Overlay Network
• No differentiation between peers – all are considered equal

Hybrid Overlay Network
• Some peers are given special tasks to perform

• Also referred to as super-peer systems



14

Structured versus Unstructured Networks

14

Unstructured Overlay Network
• Peers may communicate directly with any of their neighbours

• Peers may join network by attaching to any other peer

Structured Overlay Network
• Tightly controlled topology and message routing

• Peers may only communicate with certain other peers

• Peers may only join the network in certain places



15

Unstructured Peer-to-Peer Networks

15

Overlay network constructed in an ad hoc manner

Data placement is unrelated to overlay topology

Examples:
• Gnutella, Freenet, BitTorrent, Kazaa

Fundamental issue of index management: 
• Which peers hold which resources?

• Centralised versus distributed



16

Centralised Index Management: Napster

16

Index
server



17

Centralised Index Management: Napster

17

Find 
resource R

Index
server



18

Centralised Index Management: Napster

18

Who has 
resource R?

Index
server



19

Centralised Index Management: Napster

19

Peer-23 
has 

resource R

Peer-23

Index
server

R



20

Centralised Index Management: Napster

20

Give me 
resource R

Peer-23

Index
server

R



21

Centralised Index Management: Napster

21

Here is 
resource R

Peer-23

Index
server

R



22

Centralised Index Management

22

P2P networks with centralised indexes are hybrid networks
• Specialised peer for handling index

• Not all peers are equal

Centralised indexes are problematic
• Central point of failure (kill the index, kill the network)

• Bottleneck (limits throughput)



23

Distributed Index Management: Gnutella

23

R



24

Distributed Index Management: Gnutella

24

Find 
resource R

R



25

Distributed Index Management: Gnutella

25

Who has 
resource R?

Who has 
resource R?

R



26

Distributed Index Management: Gnutella

26

Who has 
resource R?

Who has 
resource R?

Who has 
resource R?

Who has 
resource R?

R



27

Distributed Index Management: Gnutella

27

Here is 
resource R

R



28

Distributed Index Management

28

Search neighbour using flooding or gossiping

• Flooding
• Each peer sends the request to all of its neighbours

• Not scalable – heavy demands on network resources

• Time-to-live (maximum number of hops) on messages

• Gossiping
• Each peer knows all other peers in network

• Chooses one peer to pass on request

• Request eventually propagated to all nodes



29

Super-Peer Networks
• “Normal” peers index their content at super-peers

• Super-peers conduct neighbourhood search

• Single super-peer (original Napster, more or less)

29



30

Super-Peer Networks

30



31

Structured Peer-to-Peer Networks

31

Address scalability shortcomings of unstructured networks

Distributed Hash Tables are most popular approach

Range of applications:
• Peer-to-peer file sharing

• Content distribution networks

• Distributed file systems



Distributed Hash Tables



33

Distributed Hash Tables

33

Provides a lookup service similar to a hash table
• put(key, resource)

• get(key) → resource

Hash of resource key used to locate peer holding that resource

Routing protocol used to locate target peer (requires that peers share routing 
information between themselves)

Several approaches, based on different routing geometries:
• Ring, hypercube, tree



34

Chord: A ring geometry DHT
• Peers and keys are given m-bit hash 

identifiers

• Peers and keys are then arranged into an 
identifier circle with at most 2m-1 nodes

• Keys are stored at the first peer whose 
identifier is greater than or equal to the 
key’s identifier

K24
K30

K38

K10

K54

0

31

1547

7

2339

55

m=6
id: 0..63

P1

P8

P14

P21

P32

P38

P42

P48

P51

P56

K10

K54

K38
K24

K30



35

Chord: A ring geometry DHT
• Each peer has a successor and 

predecessor

• Successor chain used to find peer 
holding resource

X.get(k) {
peer = find-successor(k)
resource = peer.lookup(k)
return resource

}

X.find-successor(k) {
if H(k) in (H(k), H(succ)]

return succ
else

return succ.find-successor(k)
} K24

K30

K38

K10

K54

0

31

1547

7

2339

55

m=6
id: 0..63

P1

P8

P14

P21

P32

P38

P42

P48

P51

P56

P8.succ

P14.succ

P21.succP32.succ

P38.succ

P42.succ

P48.succ

P51.succ

P8.find-successor(K54)



36

Chord: A ring geometry DHT
• Following successors gives linear search

• Improve using a finger table:
• Contains up to m entries

• ith entry of peer n contains 
succ((n+2i-1) mod 2m)

P8+1 P14

P8+2 P14

P8+4 P14

P8+8 P21

P8+16 P32

P8+32 P42 K24
K30

K38

K10

K54

0

31

1547

7

2339

55

m=6
id: 0..63

P1

P8

P14

P21

P32

P38

P42

P48

P51

P56



Peer to Peer Join Processing



38

PIERjoin – using DHTs for equi-joins

38

We wish to evaluate an equi-join query Q: T = R ⨝A S

• The tuples in R, S and T are stored in a DHT with hash function h()

• Rp, Sp, Tp are the horizontal fragments of R, S and T held by peer p of the DHT

• HR, HS are the sets of peers storing tuples of R, S

• HT is the set of peers that will contain the output relation T

Three phases: 

• Multicast

• Hash

• Probe/Join

Huebsch, R. et al (2003) Querying the Internet with PIER. Proceedings of the 29th VLDB Conference. pp.321-332.



39

PIERjoin: Multicast phase

39

At query originator, send Q to all peers in HS and HT



40

PIERjoin: Hash phase
foreach peer p in HR that received Q in parallel do

foreach tuple r in Rp do
put(h(A), r)

foreach peer p in HS that received Q in parallel do
foreach tuple s in Sp do

put(h(A), s)



41

PIERjoin: Probe/join phase
foreach peer p in HT in parallel do

if a new tuple i has arrived then
if i is a tuple from R then

probe for s tuples in Sp using h(A)
Tp <- i ⨝ s

else
probe for r tuples in Rp using h(A)
Tp <- r ⨝ i



42

PIERjoin
We’ve seen something similar before: Repartitioned Join (AKA parallel hash join)

(this is a pipelined variant without the final union)

HR HS

JOIN
HT

Q

put(h(A),r) put(h(A),s)



Summary



44

Comparison of Peer-to-Peer Systems

44

Requirement Unstructured Super-Peer Structured

Autonomy Low Moderate Low

Query Expressivity High High Low

Efficiency Low High High

Quality of Service Low High High

Fault-Tolerance High Low High

Security Low High Low



45


