

Information Retrieval
COMP3211 Advanced Databases

Dr Nicholas Gibbins – nmg@ecs.soton.ac.uk

2020-2021

3

A Definition

3

Information retrieval (IR) is the task of finding relevant documents in a collection

Best known modern examples of IR are Web search engines

4

Overview

4

• Information Retrieval System Architecture

• Implementing Information Retrieval Systems

• Indexing for Information Retrieval

• Information Retrieval Models
• Boolean

• Vector

• Evaluation

5

The Information Retrieval Problem

5

The primary goal of an information retrieval system is to retrieve all the documents
that are relevant to a user query while retrieving as few non-relevant documents as

possible

6

Terminology

6

An information need is a topic about which a user desires to know more

A query is what the user conveys to the computer in an attempt to communicate their
information need.

A document is relevant if it is one that the user perceives as containing information of
value with respect to their personal information need.

7

High-Level System Architecture

7

document
collection

query

query
parsing

retrieval and
ranking

indexer

answer
set

index

8

Characterising IR Systems

8

Document collection
• Document granularity: paragraph, page or multi-page text

Query
• Expressed in a query language

• List of words [AI book], a phrase [“AI book”], contain boolean operators [AI AND book] and
non-boolean operators [AI NEAR book]

Answer Set
• Set of documents judged to be relevant to the query

• Ranked in decreasing order of relevance

9

Implementing IR Systems

9

User expectations of information retrieval systems are exceedingly demanding
• Need to index billion document collections

• Need to return top results from these collections in a fraction of a second

Design of appropriate document representations and data structures is critical

10

Information Retrieval Models
An information retrieval model consists of

• A set D of representations of the documents in the collection

• A set Q of representations of user information needs (queries)

• A ranking function R(di,qi) that associates a real number with a query representation qi ∈ Q
and a document representation di ∈ D

qi

di

R(qi,di)

documents

queries

11

Information Retrieval Models

11

Information retrieval systems are distinguished by how they represent documents, and
how they match documents to queries

Several common models:
• Boolean (set-theoretic)

• Algebraic (vector spaces)

• Probabilistic

Implementing Information Retrieval

13

Term Selection
Information retrieval systems either:

• index all words contained in documents (full-text indexing)

• selectively extract index terms from the documents that are to be indexes

Tokens
Stop word
removal

Noun
grouping

Stemming
Manual

indexing
docs

full text
index
terms

term selection

14

Tokenisation

14

Identify distinct words
• Separate on whitespace, turn each document into list of tokens

• Discard punctuation (but consider tokenisation of O’Neill, and hyphens)

• Fold case, remove diacritics

Tokenisation is language-specific
• Identify language first (using character n-gram model, Markov model)

• Languages with compound words (e.g. German, Finnish) may require special treatment
(compound splitting)

• Languages which do not leave spaces between words (e.g. Chinese, Japanese) may require
special treatment (word segmentation)

15

Word Significance

15
word rank order

word
frequency

Zipf’s law: Pn ~= 1/na

Pn

n

16

Word Significance

16

Resolving power of
significant words

significant words

upper cut-off

lower cut-off

word rank order

word
frequency

Pn

n

17

Stop Word Removal

17

Extremely common words have little use for discriminating between documents
• e.g. the, of, and, a, or, but, to, also, at, that...

Construct a stop list
• Sort terms by collection frequency

• Identify high frequency stop words (possibly hand-filtering)

• Use stop list to discard terms during indexing

18

Noun Grouping

18

Most meaning is carried by nouns

Identify groups of adjacent nouns to index as terms
• e.g. railway station

• Special case of biword indexing

19

Stemming

19

Terms in user query might not exactly match document terms
• query contains ‘computer’, document contains ‘computers’

Terms have wide variety of syntactic variations
• Affixes added to word stems, that are common to all inflected forms

• For English, typically suffixes

• e.g. connect is the stem of: connected, connecting, connects

Use stemming algorithm:
• to remove affixes from terms before indexing

• when generating query terms from query

20

Stemming Algorithms

20

Lookup table
• Contains mappings from inflected forms to uninflected stems

Suffix-stripping
• Rules for identifying and removing suffixes

• e.g. ‘-sses’→‘-ss’

• Porter Stemming Algorithm

Lemmatisation
• Identify part of speech (noun, verb, adverb)

• Apply POS-specific normalisation rules to yield lemmas

21

Stemming

21

Yields small (~2%) increase in recall for English
• More important in other languages

Can harm precision
• ‘stock’ versus ‘stocking’

Difficult in agglomerative languages (German, Finnish)

Difficult in languages with many exceptions (Spanish)
• Use a dictionary

22

Manual Indexing

22

Identification of indexing terms by a (subject) expert

Indexing terms typically taken from a controlled vocabulary
• may be a flat list of terms, or a hierarchical thesaurus

• may be structured terms
(e.g. names or structures of chemical compounds)

23

Result Presentation

23

Probability ranking principle
• List ordered by probability of relevance

• Good for speed

• Doesn’t consider utility

• If two copies of most relevant document, second has equal relevance but zero utility once
you’ve seen the first.

Many IR systems eliminate results that are too similar

24

Result Presentation

24

Results classified into pre-existing taxonomy of topics
• e.g. News as world news, local news, business news, sports news

• Good for a small number of topics in collection

Document clustering creates categories from scratch for each result set
• Good for broader collections (such as WWW)

Indexing

26

Lexicon
Data structure listing all the terms that appear in the document collection

• Lexicon construction carried out after term selection

• Usually hash table for fast lookup

aardvark

...

antelope

antique

27

Inverted Index
Data structure that relates a word in the lexicon to a document in which it appears (a
posting)

May also include:
• occurrence count within document

• pointer to location of word within document

aardvark

...

antelope

antique

d17 d23

d13 d19 d29

d17 d20 d31 d32

postingslexicon

28

Searching for single words, attempt 1

28

If postings consist only of document identifiers, no ranking of results is possible

1. Lookup query term in lexicon

2. Use inverted index to get address of posting list

3. Return full posting list

29

Searching for single words, attempt 2

29

If postings also contain term count, we can do some primitive ranking of results:

1. Lookup query term in lexicon

2. Use inverted index to get address of posting list

3. Create empty priority queue with maximum length R

4. For each document/count pair in posting list
1. If priority queue has fewer than R elements,

add (doc, count) pair to queue

2. If count is larger than lowest entry in queue,
delete lowest entry and add the new pair

Boolean Model

31

Boolean Model

31

Lookup each query term in lexicon and inverted index

Apply boolean set operators to posting lists for query terms to identify set of relevant
documents

• AND - set intersection

• OR - set union

• NOT - set complement

32

Example

32

Document collection:
d1 = “Three quarks for Master Mark”

d2 = “The strange history of quark cheese”

d3 = “Strange quark plasmas”

d4 = “Strange Quark XPress problem”

33

Example

33

Lexicon and inverted index:
three → {d1}
quark → {d1, d2, d3, d4}
master → {d1}
mark → {d1}
strange → {d2, d3, d4}
history → {d2}
cheese → {d2}
plasma → {d3}
xpress → {d4}
problem → {d4}

34

Example

34

Query:
“strange” AND “quark” AND NOT “cheese”

Result set:
{d2, d3, d4} ∩ {d1, d2, d3, d4} ∩ {d1, d3, d4} = {d3, d4}

3535Image courtesy of Deborah Fitchett

36

Document Length Normalisation

36

In a large collection, document sizes vary widely
• Large documents are more likely to be considered relevant

Adjust answer set ranking – divide rank by document length
• Size in bytes

• Number of words

• Vector norm

37

Positional Indexes

37

If postings include term locations, we can also support a term proximity operator
• term1 /k term2

• effectively an extended AND operator

• term1 occurs in a document within k words of term2

When calculating intersection of posting lists, examine term locations

38

Biword Indexes

38

Can extend boolean model to handle phrase queries by indexing biwords (pairs of
consecutive terms)

Consider a document containing the phrase “electronics and computer science”
• After removing stop words and normalising, index the biwords “electronic computer” and

“computer science”

• When querying on phrases longer than two terms, use AND to join constituent biwords

Vector Model

40

Beyond Boolean
In the basic boolean model, a document either matches a query or not

• Need better criteria for ranking hits (similarity is not binary)

• Partial matches

• Term weighting

41

Binary Vector Model

41

Documents and queries are represented as vectors of term-based features (occurrence
of terms in collection)

𝑑! = ⟨𝑤",!, 𝑤$,!, … , 𝑤%,!⟩
�⃗� = ⟨𝑤",&, 𝑤$,&, … , 𝑤%,!⟩

Features may be binary:
𝑤𝑚, 𝑗 = 1 if term 𝑘𝑚 is present in document 𝑑𝑗,
𝑤𝑚, 𝑗 = 0 otherwise

42

Weighted Vector Model

42

Not all terms are equally interesting
• ‘the’ vs ‘system’ vs ‘Berners-Lee’

Replace binary features with weights
𝑑! = ⟨𝑤",!, 𝑤$,!, … , 𝑤%,!⟩
�⃗� = ⟨𝑤",&, 𝑤$,&, … , 𝑤%,!⟩

0 ≤ 𝑤',! ≤ 1

View documents and queries as vectors in multidimensional space

43

Vector Model Similarity

43

𝑑) ⋅ �⃗� = |𝑑)||�⃗�|𝑐𝑜𝑠𝜃𝑑)

�⃗�

𝜃

44

Vector Model Similarity

44

Similarity can still be determined using the dot product
• Angle between vectors in multidimensional space

𝑠𝑖𝑚 �⃗�, 𝑑! = &⋅)$
| &||)$|

𝑠𝑖𝑚 �⃗�, 𝑑! =
∑'+"% 𝑤',!𝑤',&

∑'+"% 𝑤',!$ ∑'+"% 𝑤',&$

45

Term Weighting

45

Need a basis for assigning weights to terms in documents

How common is the term in the document?
• Within document measure

• Term frequency

How common is the term in the document collection?
• Collection frequency

• Inverse document frequency

46

TF-IDF

46

Term Frequency

𝑡𝑓*,) =
#(𝑡* 𝑖𝑛 𝑑))

∑,#(𝑡, 𝑖𝑛 𝑑))

Inverse Document Frequency

𝑖𝑑𝑓* = log-
|𝐷|

|{𝑑 ∈ 𝐷: 𝑡* 𝑖𝑛 𝑑}|

Term Weighting
𝑤*,) = 𝑡𝑓*,)𝑖𝑑𝑓*

47

TF-IDF Example

47

Consider the following document collection:
d1 = “Introduction to Expert Systems”

d2 = “Expert System Software: Engineering and Applications”

d3 = “Expert Systems: Principles and Programming”

d4 = “The Essence of Expert Systems”

d5 = “Knowledge Representation and Reasoning”

d6 = “Reasoning About Uncertainty”

d7 = “Handbook of Knowledge Representation”

d8 = “Expert Python Programming”

48

TF-IDF Example

48

What’s the weight of “knowledge” in d5?

𝑖𝑑𝑓”,/0123453” = log-(⁄8 2) = log- 4 = 2
𝑡𝑓”,/0123453”,4! = ⁄1 3
𝑡𝑓. 𝑖𝑑𝑓”,/0123453”,4! = ⁄2 3

(assuming that ‘and’ is removed as a stop word)

Query Refinement

50

Query Refinement

50

Typical queries very short, ambiguous
• Add more terms to disambiguate, improve

Often difficult for users to express their information needs as a query
• Easier to say which results are/aren’t relevant than to write a better query

51

Rocchio Method

51

Query refinement through relevance feedback

• Retrieve with original queries

• Present results

• Ask user to tag relevant/non-relevant

• “push” toward relevant vectors, away from non-relevant

𝑞*67 = 𝛼𝑞* +
𝛽
|𝐷8|

F
4"∈9#

𝑑) −
𝛾

|𝐷/8|
F

4$∈9%#

𝑑,

𝛾 < 𝛽 (typical values: 𝛼 = 1, 𝛽 = 0.75, 𝛾 = 0.25)

52

Rocchio Method

52

𝐷𝑟

𝐷𝑛𝑟

𝑞𝑛

𝑞#$%

Evaluation

54

Relevance

54

Relevance is the key to determining the effectiveness of an IR system
• Relevance (generally) a subjective notion

• Relevance is defined in terms of a user’s information need

• Users may differ in their assessment of relevance of a document to a particular query

55

Relevance versus Retrieved

55

The set of all documents

The set of retrieved
documents

The set of relevant
documents

R A

56

Precision and Recall

56

Two common statistics used to determine effectiveness:

Precision: What fraction of the returned results are relevant to the information need?

Recall: What fraction of the relevant documents in the collection were returned by the
system?

57

Precision and Recall

Retrieved Not Retrieved

Relevant 𝑅 ∩ 𝐴 𝑅 ∩ ¬𝐴 𝑅

Not Relevant ¬𝑅 ∩ 𝐴 ¬𝑅 ∩ ¬𝐴 ¬𝑅

𝐴 ¬𝐴

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑅 ∩ 𝐴|
|𝐴|

𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝑅 ∩ 𝐴|
|𝑅|

57

58

Precision and Recall, an alternative view

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑃(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡|𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑃(𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑|𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡)

Retrieved Not Retrieved

Relevant 𝑅 ∩ 𝐴 𝑅 ∩ ¬𝐴 𝑅

Not Relevant ¬𝑅 ∩ 𝐴 ¬𝑅 ∩ ¬𝐴 ¬𝑅

𝐴 ¬𝐴

59

Positive and Negative Rates

Retrieved Not Retrieved

Relevant True Positive False Negative

Not Relevant False Positive True Negative

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = ⁄𝑇𝑃 𝑇𝑃 + 𝐹𝑁 = 𝑅𝑒𝑐𝑎𝑙𝑙
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = ⁄𝑇𝑁 𝐹𝑃 + 𝑇𝑁 = 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦
𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = ⁄𝐹𝑃 𝐹𝑃 + 𝑇𝑁 = 𝐹𝑎𝑙𝑙𝑜𝑢𝑡
𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = ⁄𝑇𝑃 (𝑇𝑃 + 𝐹𝑃) = 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

60

Example

Retrieved Not Retrieved

Relevant 30 20

Not Relevant 10 40

Collection of 100 documents:

• 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ⁄30 30 + 10 = 75%

• 𝑅𝑒𝑐𝑎𝑙𝑙 = ⁄30 (30 + 20) = 60%

61

Precision versus Recall

61

Can trade off precision against recall
• A system that returns every document in the collection as its result set guarantees recall of

100% but has low precision

• Returning a single document could give low recall but 100% precision

62

Precision versus Recall

62

precision

recall

line of iso-effectiveness

varying control parameter

63

Precision versus Recall

63

precision

recall

Increasing effectiveness

64

Precision versus Recall - Example

64

An information retrieval system contains the following ten documents that are relevant
to a query q:

d1, d2, d3, d4, d5,
d6, d7, d8, d9, d10

In response to q, the system returns the following ranked answer set containing fifteen
documents (bold are relevant):

d3, d11, d1, d23, d34,
d4, d27, d29, d82, d5,
d12, d77, d56, d79, d9

65

Precision versus Recall - Example

65

Calculate curve at eleven standard recall levels:
0%, 10%, 20%, ... 100%

Interpolate precision values as follows:

𝑃 𝑟) = max
∀8=8"

𝑃(𝑟)

where 𝑟! is the j-th standard recall level

P(rj)=max∀r>rj
P(r)

66

Precision versus Recall - Example

66

Calculate curve at eleven standard recall levels:
0%, 10%, 20%, ... 100%

If only d3 is returned
• Precision = 1 / 1 = 100%

• Recall = 1 / 10 = 10%

67

Precision versus Recall - Example

67

Calculate curve at eleven standard recall levels:
0%, 10%, 20%, ... 100%

If d3, d11, d1 are returned
• Precision = 2 / 3 = 67%

• Recall = 2 / 10 = 20%

68

Precision versus Recall - Example

68

Calculate curve at eleven standard recall levels:
0%, 10%, 20%, ... 100%

If d3, d11, d1, d23, d34, d4 are returned
• Precision = 3 / 6 = 50%

• Recall = 3 / 10 = 30%

69

Precision versus Recall - Example

69

Calculate curve at eleven standard recall levels:
0%, 10%, 20%, ... 100%

If d3, d11, d1, d23, d34, d4, d27, d29, d82, d5 are returned
• Precision = 4 / 10 = 40%

• Recall = 4 / 10 = 40%

70

Precision versus Recall - Example

70

Calculate curve at eleven standard recall levels:
0%, 10%, 20%, ... 100%

If full answer set is returned
• Precision = 5 / 15 = 33%

• Recall = 5 / 10 = 50%

71

Precision versus Recall

71

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

Pr
ec

is
io

n

Recall

72

Accuracy

72

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ⁄(𝑇𝑃 + 𝑇𝑁) (𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)
• Treats IR system as a two-class classifier (relevant/non-relevant)

• Measures fraction of classification that is correct

• Not a good measure – most documents in an IR system will be irrelevant to a given
query (skew)

• Can maximise accuracy by considering all documents to be irrelevant

73

F-Measure

73

Weighted harmonic mean of precision and recall

𝐹 =
1

𝛼 1𝑃 + (1 − 𝛼)
1
𝑅
=

𝛽- + 1 𝑃𝑅
𝛽-𝑃 + 𝑅

𝛽- =
1 − 𝛼
𝛼

Balanced F-Measure (F1) equally weights precision and recall
• 𝛼 = 1/2, 𝛽 = 1
• 𝐹1 = 2 (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑟𝑒𝑐𝑎𝑙𝑙) / (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)

74

Average Precision at N (P@N)

74

For most users, recall is less important than precision
• How often do you look past the first page of results?

Calculate precision for the first N results
• Typical values for N: 5, 10, 20

• Average over a sample of queries (typically 100+)

75

Receiver Operating Characteristic

75

Plot curve with:
• True Positive Rate on y axis (Recall or Sensitivity)

• False Positive Rate on x axis (1 – Specificity)

76

Receiver Operating Characteristic Curve

76

lin
e
of

 d
isc

rim
in

at
io

n
TPR

FPR

0.0

1.00.0

1.0 perfect

better

worse

77

Other Effectiveness Measures

77

Reciprocal rank of first relevant result:
• if the first result is relevant it gets a score of 1

• if the first two are not relevant but the third is, it gets a score of 1/3

Time to answer measures how long it takes a user to find the desired answer to a
problem

• Requires human subjects

Moving to Web Scale

79

Scale

79

Typical document collection:
• 1E6 documents; 2-3 GB of text

• Lexicon of 500,000 words after stemming and case folding; can be stored in ~10 MB

• Inverted index is ~300 MB (but can be reduced to >100 MB with compression)

80

Web Scale

80

Web search engines have to work at scales over four orders of magnitude larger
(estimate of 1.1E10+ documents in 2005)

• Index divided into k segments on different computers

• Query sent to computers in parallel

• k result sets are merged into single set shown to user

• Thousands of queries per second requires n copies of k computers

Web search engines don’t have complete coverage (Google was best at ~8E9
documents in 2005)

81

Extended Ranking

81

So far, we’ve considered the role that document content plays in ranking
• Term weighting using TF-IDF

Can also use document context – hypertext connectivity
• HITS (Hyperlink-Induced Topic Search)

• Google PageRank

82

Hyperlink-Induced Topic Search
Assign all documents a hub score and an authority score

• A document which links to many pages has a high hub score
• A document which is linked to by many pages has a high authority score

Calculated iteratively:
• ∀𝑝 ∈ 𝑃, ℎ𝑢𝑏 𝑝 ← 1, 𝑎𝑢𝑡ℎ(𝑝) ← 1
• repeat

• ∀𝑝 ∈ 𝑃, 𝑎𝑢𝑡ℎ 𝑝 ← ∑'∈)!" ℎ𝑢𝑏(𝑞) where 𝑝*+ is the set of the pages that link to 𝑝
• ∀𝑝 ∈ 𝑃, ℎ𝑢𝑏 𝑝 ← ∑'∈)#$"% 𝑎𝑢𝑡ℎ(𝑞) where 𝑝,-+. is the set of pages linked to by 𝑝

• ∀𝑝 ∈ 𝑃, 𝑎𝑢𝑡ℎ 𝑝 ← 𝑎𝑢𝑡ℎ(𝑝)/ ∑'∈/ 𝑎𝑢𝑡ℎ 𝑞 0

• ∀𝑝 ∈ 𝑃, ℎ𝑢𝑏 𝑝 ← ℎ𝑢𝑏(𝑝)/ ∑'∈/ ℎ𝑢𝑏 𝑞 0

Hub/auth scores are query-dependent – calculated at query time

83

PageRank
Unlike HITS, uses only a single score to estimate importance of document

• More important documents are linked to more often

• Links from more important documents carry more weight when calculating importance

𝑝𝑎𝑔𝑒𝑟𝑎𝑛𝑘 𝑝 =
1 − 𝑑
𝑃

+ 𝑑 N
&∈-12

𝑝𝑎𝑔𝑒𝑟𝑎𝑛𝑘(𝑞)
𝑞./01

(𝑑 is a damping factor, typically 0.85)

PageRanks are query-independent – calculated at index time

Next lecture: NoSQL Databases

