


Ontology Engineering
and Design Patterns
COMP6215 Semantic Web Technologies

Dr Nicholas Gibbins  - nmg@ecs.soton.ac.uk



3

Ontologies

“a formal, explicit specification of a shared conceptualisation” (Gruber)

https://userpages.uni-koblenz.de/~staab/Research/Publications/2009/handbookEdition2/what-is-an-ontology.pdf

https://userpages.uni-koblenz.de/~staab/Research/Publications/2009/handbookEdition2/what-is-an-ontology.pdf


4

Ontologies

“a formal, explicit specification of a shared conceptualisation” (Gruber)

https://userpages.uni-koblenz.de/~staab/Research/Publications/2009/handbookEdition2/what-is-an-ontology.pdf

Machine 
understandable

Representation of concepts 
and constraints is explicitly 

defined

ontology should represent a 
shared view of the domain

modelling the concepts 
and relations of the 

domain

https://userpages.uni-koblenz.de/~staab/Research/Publications/2009/handbookEdition2/what-is-an-ontology.pdf


5

Ontologies

“a formal, explicit specification of a shared conceptualisation” (Gruber)

The combination of concepts and relationships required to model a knowledge domain 
in a human and machine understandable format

https://userpages.uni-koblenz.de/~staab/Research/Publications/2009/handbookEdition2/what-is-an-ontology.pdf

Machine 
understandable

Representation of concepts 
and constraints is explicitly 

defined

ontology should represent a 
shared view of the domain

modelling the concepts 
and relations of the 

domain

https://userpages.uni-koblenz.de/~staab/Research/Publications/2009/handbookEdition2/what-is-an-ontology.pdf


6

Type of Ontologies
There are four main types of ontologies:

• Representation ontologies

• General or upper-level ontologies

• Domain ontologies

• Application ontologies



7

Representation ontologies
Describe low level primitive 
representations

• Such as semantic web languages

Example ontologies:
• OWL, RDF, RDFS

Usual size: small, a few dozens of 
concepts and relations



8

Upper-level ontologies
Describe high-level, abstract, concepts

Usually domain independent
• Can be used as part of other ontologies

Sometimes part of broad ontologies

Examples:

• DOLCE 
(small upper level ontology)

• Cyc: commonsense ontology 
• Hundreds of thousands of concepts

• WordNet:  English lexicon 
• Over 150K concepts

• SUMO: Suggested Upper Merged 
Ontology

• Around 10K concepts



9

Example: A (tiny) fragment of Cyc



10

Domain ontologies
Describe a particular domain extensively 

Domain dependent by definition

Examples:

• GO: Gene Ontology
• Roughly 25K concepts

• CIDOC CRM: cultural heritage
• Roughly 100 concepts

• FMA: Foundational Model of Anatomy
• Around 75K concepts



11

Example: CRM Ontology



12

Application ontologies
Mainly designed to answer to the needs of 
a particular application

Scaled and focused to fit the application 
domain requirements

Examples:

• FOAF: Friend of a Friend ontology
• about a dozen concepts

• ESWC06: for conference metadata
• about 80 concepts, including FOAF



Ontology Building Methodologies



14

Ontology Building Methodologies
No standard methodology for ontology construction

There are a number of methodologies and best practices

The following life cycle stages are usually shared by the methodologies:
• Specification  - scope and purpose

• Conceptualisation  - determining the concepts and relations

• Formalisation  - axioms, restrictions

• Implementation  - using some ontology editing tool

• Evaluation  - measure how well you did

• Documentation  - document what you did



15

Specification
Specifying the ontology’s purpose and scope 

• Why are you building this ontology?

• What will this ontology be used for? 

• What is the domain of interest? 
• An ontology for car sales probably doesn't need to know much about types and prices of 

engine oil

• How much detail do you need?



16

Specification: Competency Questions
What are the questions you need the ontology to answer?

• These are competency questions

• Make a list of such questions and use as a check list when designing the ontology

• Helps to define scope, level of detail, evaluation, etc.



17

Specification: Competency Questions
The questions that you REALLY need 

• You probably don’t need to worry about the questions that “perhaps someone might 
need to ask someday”

The questions that CAN BE answered

• Can you get the necessary data to answer those questions?

• Permanent lack of some data may render parts of the ontology useless!



18

Conceptualisation
Identify the concepts to include in your ontology, and how they relate to each other

• Depends on your defined scope and competency questions

• Define unambiguous names and descriptions for classes and properties 
(more on this in Documentation)

• Reach agreement (the hard part!)

The best tool to use:



19

Conceptualisation

Start with pen and paper, 
diagramming software (e.g. Visio, 
Mind Maps), or cards/postit notes



20

Conceptualisation: Reuse
Ontologies are meant to be reusable!

• Technology for reusing ontologies is still limited

Always a good idea to check any existing models or ontologies
• Check your database models or off-the-shelf ontologies

Check existing ontologies
• No need to reinvent the wheel, unless it is easier to do so!

• Ontology search engines

• Swoogle, Watson,  lodlaundromat



21

What can you reuse?

21

• Databases

• Vocabularies

• Ontologies
• Some much re-used ontologies

• For describing persons: FOAF

• For describing documents: Dublin Core

• For describing social media: SIOC

• For describing vocabulary hierarchies: SKOS

• For describing e-commerce: Good Relations

• For Web metadata: schema.org

• ...



22

Formalisation
• Moving from a list of concepts to a formal model

• Define the hierarchy of concepts and relations 

• Also note down any restrictions
• E.g. NonProfitOrg isDisjoint from ProfitOrg

• An email address is unique



23

Formalisation: Building the Class Hierarchy
Top-down

• Start with the most general classes and finish with the most detailed classes

Bottom-up
• Start with the most detailed classes and finish with the most general ones

Middle-out
• Start with the most obvious classes 

• Group as required

• Then go upwards and downwards to the more general and more detailed classes 
respectively

• Good for controlling scope and detail



24

Formalisation: Middle-Out Approach

Staff Student University



25

Formalisation: Middle-Out Approach

Staff Student University

Organisation

Research
Staff

Teaching
Staff

Undergrad
Student

Postgrad
Student

Person



26

Formalisation: Middle-Out Approach

Staff Student University

Organisation
affiliatedTo

studiesAt

worksAt

Research
Staff

Teaching
Staff

Undergrad
Student

Postgrad
Student

Person



27

Formalisation: Naming Conventions
• Not rules, but conventions

• Avoid spaces and uncommon delimiters in class and relation names
• E.g. use PetFood or Pet_Food instead of Pet Food or Pet*Food

• Capitalise each word in a class name
• E.g. PetFood instead of Petfood or even petfood

• Start names of relations with a lowercase letter
• E.g. pet_owner, petOwner

• Use singular nouns for classes 
• E.g. Pet, Person, Shop



28

Formalisation: Class or Relation?
Is it a class or a relation? 

It depends! 

If the subclass doesn’t need any new relations (or restrictions), then consider making it 
a relation

type of study
Full time

Part time
Student

Part Time Student

Student

Full Time Student



29

Formalisation: Class or Instance?
Is it a class or an instance?

• If it can have its own instances, then it should be a class

• If it can have its own subclasses, then it should be a class

Student University

John Smith Uni of Soton
studiesAt

rdf:type rdf:type



30

Formalisation: Transitivity of Class Hierarchy
subClassOf relation is always transitive

• Car is a subclass of Vehicle

• Vehicle is a subclass of 
TransportationObject

• Any instance of Car is also a 
TransportationObject

subClassOf is not the same as “part of”
• (see meronymy pattern later this lecture)

rdfs:subClassOf

rdfs:subClassOf

Car

TransportationObject

Vehicle

partOf

Car

Wheel



31

Formalisation: Tidy Your Hierarchy
Avoid subClassOf clutter!

• Break down your hierarchy further if you have too many direct subclasses of a class

Staff

Technician Administrator

Research Fellow

Res. Assistant

Senior RF

Professor

Lecturer

Senior Lecturer



32

Formalisation: Tidy Your Hierarchy
Avoid subClassOf clutter!

• Break down your hierarchy further if you have too many direct subclasses of a class

Staff

Technician Administrator

Research Fellow Res. Assistant

Senior RF
Professor

Lecturer

Senior Lecturer

Academic

Researcher



33

Formalisation: Where to Point my Relation?
Relations should point to the most general class

• But not too general

• e.g relations pointing to Thing!

• And not too specific

• e.g. relations pointing to the bottom of the hierarchy

As a rule of thumb, if the domain or range of a relation is a disjunction (union) of 
classes, some refactoring is probably required



34

Formalisation: Where to Point my Relation?

Staff

Technician Administrator

Research Fellow

Res. Assistant

Senior RF
Professor

Lecturer

Senior Lecturer

AcademicResearcher

University

Module

works for

teaches



35

Formalisation: Where to Point my Relation?

Staff

Technician Administrator

Research Fellow
Res. Assistant

Senior RF Professor

Lecturer

Senior Lecturer

Academic

Researcher

University

Module

works for

teaches



36

Implementation
• Choose a language

• e.g. RDFS, OWL... 

• Implement it with an ontology editor
• e.g. Protégé, SWOOP, TopQuadrant

• Edit the class hierarchy

• Add relationships

• Add restrictions

• Select appropriate value types, cardinality, etc

• Use a reasoner to check the consistency of your ontology 
• e.g. Racer, Pellet, Fact++, HermiT

• Best to do this as you go along – easier to trace bugs in your modelling



37

Evaluation: Verification
Is your ontology correct?

• Is it syntactically correct?

• Is it consistent?

Implementing the ontology in an ontology editor helps to get the syntax correct

Using a reasoner helps you check that it’s consistent

You can also validate your OWL ontology online:

• http://visualdataweb.de/validator/



38

Evaluation: Validation
Does your ontology successfully do what you set out to do?

Check the ontology against your competency questions

• Write the questions in SPARQL or in similar query languages

• Can you get the answers you need?

• Is it quick enough? 

• Add additional properties or restructure the ontology to increase efficiency?



39

Documentation
Documenting the design and implementation rational is crucial for future usability and 
understanding of the ontology

• Rational, design options, assumptions, decisions, examples, etc.

Structured documentation may clarify these assumptions

Douglas Skuce proposed a convention for structured 
documentation of ontological assumptions in 1995

• Conceptual assumptions (C) 
(long definition, comparing with other classes/properties)

• Terminological assumptions (T) (alternative terms used)

• Definitional assumption (D) (short definition)

• Examples (E)



40

Structured documentation
Instead of putting C/T/D/E into a single rdfs:comment, structure the metadata using 
appropriate properties from RDFS and SKOS (import SKOS into your ontology)

Conceptual assumptions (C)
• skos:scopeNote, rdfs:comment

Terminological assumptions (T)
• skos:prefLabel, skos:altLabel, rdfs:label

Definitional assumptions (D)
• skos:definition

Examples (E)
• skos:example

Use rdfs:isDefinedBy to indicate if definition is taken from an external source



41



42

Summary
Ontology construction is an iterative process

• Build ontology, try to use it, fix errors, extend, use again, and repeat

There is no single correct model for your domain
• The same domain may be modelled in several ways

Following best practices helps to build good ontologies
• Well scoped, documented, structured

Reuse existing ontologies if possible
• Check your database models and existing ontologies

• Reuse or learn from existing representations

• (most ontology editing tools don’t yet provide good support for reuse)



43

Common Pitfalls
Over scaling and complicating your ontology

• Need to learn when to stop expanding the ontology

Lack of documentation
• For the design rationale, vocabulary and structure decisions, intended use, etc. 

Redundancy 
• Increase chances of inconsistencies and maintenance cost

Using ambiguous terminology 
• Others might misinterpret your ontology

• Mapping to other ontologies will be more difficult



Ontology Design Patterns



45

Design Patterns
Patterns are general, reusable solution to 
commonly occurring problems

• Concept originated with Christopher 
Alexander’s work on architecture

• Popularised in software engineering by 
the “gang of four”

• Subject of study by the knowledge 
engineering community



46

Design Patterns for the Semantic Web
N-ary relations

• How can we say more about a relation instance?

• How do we represent an ordered sequence of relations?

Value partitions and value sets
• How do we represent a fixed list of values?

Part-whole hierarchies
• How do we represent hierarchies other than the subclass hierarchy?



N-ary Relations



48

Binary Relations
In RDF and OWL, binary relations link two individuals, or an individual and a 
value

The properties birthYear and fatherOf are binary relations

Holbein the Elder
birthYear

Holbein the Younger

fatherOf

1460



49

Relations with Additional Information

In some cases, we need to associate additional info with a binary relation 
• e.g. certainty, strength, dates

For example, Holbein the Elder’s date of birth is unconfirmed
• He was born in either 1460 or 1465

• How can we represent this uncertainty? 

Holbein the Elder

birthYear 1460

1465birthYear

0.6

0.4

certainty

certainty



50

N-ary Relations
N-ary relations link an individual to more than a one value

Possible use cases:

1. A relation needs additional info
e.g. a relation with a rating value

2. Two binary relations are related to each other
e.g. body_temp (high, normal, low), and trend (rising, falling)

3. A relation between several individuals
e.g. someone buys a book from a bookstore

4. Linking from, or to, an ordered list of individuals
e.g. an airline flight visiting a sequence of airports



51

N-ary Relation Patterns
Pattern 1: Reified relation

• Use for cases 1, 2, and 3 above

Pattern 2: Sequence of arguments

• For case 4



52

Pattern 1: Reified Relation
To represent additional information about a relation:

• Create a new class to represent the relation

• Individuals of this class are instances of the relation

• Relation class can have additional properties to describe more information about the 
relation



53

Use case 1: additional information
Jack has given the film ‘I Am Legend’ a four-star rating

• We need to represent a quantitative value to describe the rating relation

Jack

8/10

I am Legend

film

film_rating

Film

Person

Rating



54

Jack

8

I am Legend

issued_rating _:Rating_1

rated_object

rating

Person

Film

Rating

Rating_Relation

rated_object
(someValuesFrom, functional)

issued_rating
(allValuesFrom)

rating_value
(allValuesFrom, functional)

Solution for use case 1

bNode



55

Use case 2: different aspects of a relation
Steve has a temperature which is high, but falling

• We need to represent different aspects of the temperature that Steve has

Source: W3C



56

Use case 3: no distinguished participant
John buys a “Lenny the Lion” book from books.example.com for $15 as a birthday gift

• No distinguished subject for the relation

• i.e. no primary relation to convert into a Relation Class as in cases 1 and 2

Source: W3C



57

Solution for use case 3



58

Pattern 2: Sequence of arguments
United Airlines, flight 1377 visits the following airports: LAX, DFW, and JFK

• For such an example, we need to represent a sequence of arguments



59

Pattern 2: Sequence of arguments

!"#$%&"&#'()*+',+$) %-./&!0&%11 2
3451!6.,,+$) 78(+-&%1)-5&#'()-1+',+$)-(%1-$.-$+9):1+',+$)72
3451!1;<0&%11=5 !"&#'()*+',+$) 2
3451!1;<0&%11=5

>-%-./&!?+1)3#6)#.$ 2-./&!,%90%34#$%&#)@ 7A72
./&!.$B3.C+3)@ !$+9):1+',+$)D-E



Value Partitions and Value Sets



61

Descriptive Features
Descriptive features are quite common in ontologies:

• Size = {small, medium, large}

• Risk = {dangerous, risky, safe}

• Health status = {good health, medium health, poor health}

Also called “qualities”, “modifiers” and “attributes”
• A property can have only one value for each feature to ensure consistency

Three main approaches:
• Enumerated individuals (a value set)

• Disjoint classes (a value partition)

• Datatype values (not considered in this lecture)



62

Value Sets
Values of descriptive feature are individuals



63

Value Sets
A health value can be either poor, medium or good:

𝐻𝑒𝑎𝑙𝑡ℎ𝑉𝑎𝑙𝑢𝑒 ≡ { 𝑝𝑜𝑜𝑟𝐻𝑒𝑎𝑙𝑡ℎ,𝑚𝑒𝑑𝑖𝑢𝑚𝐻𝑒𝑎𝑙𝑡ℎ, 𝑔𝑜𝑜𝑑𝐻𝑒𝑎𝑙𝑡ℎ }

Poor, medium and good are all different from each other:
𝑝𝑜𝑜𝑟𝐻𝑒𝑎𝑙𝑡ℎ ≠ 𝑚𝑒𝑑𝑖𝑢𝑚𝐻𝑒𝑎𝑙𝑡ℎ
𝑝𝑜𝑜𝑟𝐻𝑒𝑎𝑙𝑡ℎ ≠ 𝑔𝑜𝑜𝑑𝐻𝑒𝑎𝑙𝑡ℎ

𝑚𝑒𝑑𝑖𝑢𝑚𝐻𝑒𝑎𝑙𝑡ℎ ≠ 𝑔𝑜𝑜𝑑𝐻𝑒𝑎𝑙𝑡ℎ

A healthy person is a person who has some health status which is the value good:
𝐻𝑒𝑎𝑙𝑡ℎ𝑦𝑃𝑒𝑟𝑠𝑜𝑛 ≡ 𝑃𝑒𝑟𝑠𝑜𝑛 ⊓ ∃ℎ𝑎𝑠𝐻𝑒𝑎𝑙𝑡ℎ𝑆𝑡𝑎𝑡𝑢𝑠. { 𝑔𝑜𝑜𝑑𝐻𝑒𝑎𝑙𝑡ℎ }



64

Notes on Value Sets
Need axioms to set the three health values to be different from each other

• This way, a person cannot have more than one health value at a time 

Values cannot be further partitioned
• e.g. cannot have fairly_good_health as a subtype of good_health

Only one set of values is allowed for a feature
• The class HealthValue cannot be equivalent to more than one set of distinct values

• Doing so will cause inconsistencies



65

Value Partitions
Values of descriptive features are disjoint subclasses:



66

Value Partitions
Poor, medium and good are types of health value:

𝑃𝑜𝑜𝑟𝐻𝑒𝑎𝑙𝑡ℎ ⊑ 𝐻𝑒𝑎𝑙𝑡ℎ𝑉𝑎𝑙𝑢𝑒
𝑀𝑒𝑑𝑖𝑢𝑚𝐻𝑒𝑎𝑙𝑡ℎ ⊑ 𝐻𝑒𝑎𝑙𝑡ℎ𝑉𝑎𝑙𝑢𝑒
𝐺𝑜𝑜𝑑𝐻𝑒𝑎𝑙𝑡ℎ ⊑ 𝐻𝑒𝑎𝑙𝑡ℎ𝑉𝑎𝑙𝑢𝑒

Covering axiom (the only types of health value are poor, medium and good):
𝐻𝑒𝑎𝑙𝑡ℎ𝑉𝑎𝑙𝑢𝑒 ≡ 𝑃𝑜𝑜𝑟𝐻𝑒𝑎𝑙𝑡ℎ ⊓ 𝑀𝑒𝑑𝑖𝑢𝑚𝐻𝑒𝑎𝑙𝑡ℎ ⊓ 𝐺𝑜𝑜𝑑𝐻𝑒𝑎𝑙𝑡ℎ

Poor, medium and good are pairwise disjoint:
𝑃𝑜𝑜𝑟𝐻𝑒𝑎𝑙𝑡ℎ ⊓ 𝑀𝑒𝑑𝑖𝑢𝑚𝐻𝑒𝑎𝑙𝑡ℎ ≡ ⊥
𝑃𝑜𝑜𝑟𝐻𝑒𝑎𝑙𝑡ℎ ⊓ 𝐺𝑜𝑜𝑑𝐻𝑒𝑎𝑙𝑡ℎ ≡ ⊥

𝑀𝑒𝑑𝑖𝑢𝑚𝐻𝑒𝑎𝑙𝑡ℎ ⊓ 𝐺𝑜𝑜𝑑𝐻𝑒𝑎𝑙𝑡ℎ ≡ ⊥

A healthy person is a person who has some health status which is an instance of good
𝐻𝑒𝑎𝑙𝑡ℎ𝑦𝑃𝑒𝑟𝑠𝑜𝑛 ≡ 𝑃𝑒𝑟𝑠𝑜𝑛 ⊓ ∃ℎ𝑎𝑠𝐻𝑒𝑎𝑙𝑡ℎ𝑆𝑡𝑎𝑡𝑢𝑠. 𝐺𝑜𝑜𝑑𝐻𝑒𝑎𝑙𝑡ℎ



67

Value Partitions
The instance JohnsHealth can be made anonymous



68

Notes on Value Partitions
Values can be further partitioned

• Simply add subclasses to the value classes

Can have alternative partitions of the same feature

OWL 2 contains specific support for defining disjoint unions
𝐶 ≡ 𝐶! ⊔ 𝐶" ⊔⋯⊔ 𝐶#

𝐶! ⊓ 𝐶" ≡ ⊥
𝐶! ⊓ 𝐶$ ≡ ⊥

…
𝐶#%! ⊓ 𝐶# ≡ ⊥



Part-Whole Hierarchies



70

Meronymies (part-whole relations)
Taxonomies are not the only hierarchical relation that we wish to model

• A spark plug isn’t a kind of engine (class-instance)

• A spark plug is a part of an engine



71

Simple Part-Whole Representation
We need two properties:

• partOf (a transitive property)

• directPartOf (a subproperty of partOf)

part of ∘ partOf ⊑ partOf
directPartOf ⊑ partOf



72

Part-Whole Hierarchies
Represent part-whole relationships between classes using existential restrictions:

Every spark plug is a direct part of some engine: SparkPlug ⊑ ∃directPartOf. Engine

Every engine is a direct part of some car: Engine ⊑ ∃directPartOf. Car

Every wheel is a direct part of some car: Wheel ⊑ ∃directPartOf. Car



73

Defining Classes of Parts
Extend the ontology with classes of parts for each level, so that the reasoner can 
automatically derive a class hierarchy:

A car part is a part of some car: CarPart ≡ ∃partOf. Car

A direct car part is a direct part of some car: DirectCarPart ≡ ∃directPartOf. Car

An engine part is a part of some engine: EnginePart ≡ ∃partOf. Engine

A reasoner will infer that EnginePart ⊑ CarPart (but not EnginePart ⊑ DirectCarPart)



74

Fault Location
Once we have a meronymy, we can use it to inherit features within that hierarchy

For example, a reasoner could infer that a fault in a part is a fault in a whole
• Need a new property for the location of a fault: hasLocus
• Need a new class for faults: Fault

We can then define general types of located faults:

FaultInCar ≡ Fault ⊓ ∃hasLocus. CarPart
FaultInEngine ≡ Fault ⊓ ∃hasLocus. EnginePart



75

Fault Location
Now we can define specific types of located fault:

DirtySparkPlug ⊑ Fault ⊓ ∃hasLocus. SparkPlug
FlatTyre ⊑ Fault ⊓ ∃hasLocus.Wheel

The definition of the hierarchy allows a reasoner to infer that:

DirtySparkPlug ⊑ FaultInCar
DirtySparkPlug ⊑ FaultInEngine

FlatTyre ⊑ FaultInCar

But not:
FlatTyre ⊑ FaultInEngine



Further Reading



77

SWBP Notes
Defining N-ary Relations on the Semantic Web
http://www.w3.org/TR/swbp-n-aryRelations

Representing Specified Values in OWL
http://www.w3.org/TR/swbp-specified-values

Simple part-whole relations in OWL Ontologies 
http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/


