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Ontologies

“a formal, explicit specification of a shared conceptualisation” (Gruber)

https://userpages.uni-koblenz.de/~staab/Research/Publications/2009/handbookEdition2/what-is-an-ontology.pdf

https://userpages.uni-koblenz.de/~staab/Research/Publications/2009/handbookEdition2/what-is-an-ontology.pdf
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Ontologies
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Machine 
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defined
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Ontologies

“a formal, explicit specification of a shared conceptualisation” (Gruber)

The combination of concepts and relationships required to model a knowledge domain 
in a human and machine understandable format

https://userpages.uni-koblenz.de/~staab/Research/Publications/2009/handbookEdition2/what-is-an-ontology.pdf

Machine 
understandable

Representation of concepts 
and constraints is explicitly 

defined

ontology should represent a 
shared view of the domain

modelling the concepts 
and relations of the 

domain

https://userpages.uni-koblenz.de/~staab/Research/Publications/2009/handbookEdition2/what-is-an-ontology.pdf
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Type of Ontologies
There are four main types of ontologies:

• Representation ontologies

• General or upper-level ontologies

• Domain ontologies

• Application ontologies
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Representation ontologies
Describe low level primitive 
representations

• Such as semantic web languages

Example ontologies:
• OWL, RDF, RDFS

Usual size: small, a few dozens of 
concepts and relations
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Upper-level ontologies
Describe high-level, abstract, concepts

Usually domain independent
• Can be used as part of other ontologies

Sometimes part of broad ontologies

Examples:

• DOLCE 
(small upper level ontology)

• Cyc: commonsense ontology 
• Hundreds of thousands of concepts

• WordNet:  English lexicon 
• Over 150K concepts

• SUMO: Suggested Upper Merged 
Ontology

• Around 10K concepts



9

Example: A (tiny) fragment of Cyc
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Domain ontologies
Describe a particular domain extensively 

Domain dependent by definition

Examples:

• GO: Gene Ontology
• Roughly 25K concepts

• CIDOC CRM: cultural heritage
• Roughly 100 concepts

• FMA: Foundational Model of Anatomy
• Around 75K concepts
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Example: CRM Ontology
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Application ontologies
Mainly designed to answer to the needs of 
a particular application

Scaled and focused to fit the application 
domain requirements

Examples:

• FOAF: Friend of a Friend ontology
• about a dozen concepts

• ESWC06: for conference metadata
• about 80 concepts, including FOAF



Ontology Building Methodologies
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Ontology Building Methodologies
No standard methodology for ontology construction

There are a number of methodologies and best practices

The following life cycle stages are usually shared by the methodologies:
• Specification  - scope and purpose

• Conceptualisation  - determining the concepts and relations

• Formalisation  - axioms, restrictions

• Implementation  - using some ontology editing tool

• Evaluation  - measure how well you did

• Documentation  - document what you did
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Specification
Specifying the ontology’s purpose and scope 

• Why are you building this ontology?

• What will this ontology be used for? 

• What is the domain of interest? 
• An ontology for car sales probably doesn't need to know much about types and prices of 

engine oil

• How much detail do you need?
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Specification: Competency Questions
What are the questions you need the ontology to answer?

• These are competency questions

• Make a list of such questions and use as a check list when designing the ontology

• Helps to define scope, level of detail, evaluation, etc.
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Specification: Competency Questions
The questions that you REALLY need 

• You probably don’t need to worry about the questions that “perhaps someone might 
need to ask someday”

The questions that CAN BE answered

• Can you get the necessary data to answer those questions?

• Permanent lack of some data may render parts of the ontology useless!
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Conceptualisation
Identify the concepts to include in your ontology, and how they relate to each other

• Depends on your defined scope and competency questions

• Define unambiguous names and descriptions for classes and properties 
(more on this in Documentation)

• Reach agreement (the hard part!)

The best tool to use:
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Conceptualisation

Start with pen and paper, 
diagramming software (e.g. Visio, 
Mind Maps), or cards/postit notes
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Conceptualisation: Reuse
Ontologies are meant to be reusable!

• Technology for reusing ontologies is still limited

Always a good idea to check any existing models or ontologies
• Check your database models or off-the-shelf ontologies

Check existing ontologies
• No need to reinvent the wheel, unless it is easier to do so!

• Ontology search engines

• Swoogle, Watson,  lodlaundromat
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What can you reuse?
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• Databases

• Vocabularies

• Ontologies
• Some much re-used ontologies

• For describing persons: FOAF

• For describing documents: Dublin Core

• For describing social media: SIOC

• For describing vocabulary hierarchies: SKOS

• For describing e-commerce: Good Relations

• For Web metadata: schema.org

• ...
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Formalisation
• Moving from a list of concepts to a formal model

• Define the hierarchy of concepts and relations 

• Also note down any restrictions
• E.g. NonProfitOrg isDisjoint from ProfitOrg

• An email address is unique



23

Formalisation: Building the Class Hierarchy
Top-down

• Start with the most general classes and finish with the most detailed classes

Bottom-up
• Start with the most detailed classes and finish with the most general ones

Middle-out
• Start with the most obvious classes 

• Group as required

• Then go upwards and downwards to the more general and more detailed classes 
respectively

• Good for controlling scope and detail
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Formalisation: Middle-Out Approach

Staff Student University
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Formalisation: Middle-Out Approach

Staff Student University

Organisation

Research
Staff

Teaching
Staff

Undergrad
Student

Postgrad
Student

Person
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Formalisation: Middle-Out Approach

Staff Student University

Organisation
affiliatedTo

studiesAt

worksAt

Research
Staff

Teaching
Staff

Undergrad
Student

Postgrad
Student

Person
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Formalisation: Naming Conventions
• Not rules, but conventions

• Avoid spaces and uncommon delimiters in class and relation names
• E.g. use PetFood or Pet_Food instead of Pet Food or Pet*Food

• Capitalise each word in a class name
• E.g. PetFood instead of Petfood or even petfood

• Start names of relations with a lowercase letter
• E.g. pet_owner, petOwner

• Use singular nouns for classes 
• E.g. Pet, Person, Shop
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Formalisation: Class or Relation?
Is it a class or a relation? 

It depends! 

If the subclass doesn’t need any new relations (or restrictions), then consider making it 
a relation

type of study
Full time

Part time
Student

Part Time Student

Student

Full Time Student
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Formalisation: Class or Instance?
Is it a class or an instance?

• If it can have its own instances, then it should be a class

• If it can have its own subclasses, then it should be a class

Student University

John Smith Uni of Soton
studiesAt

rdf:type rdf:type
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Formalisation: Transitivity of Class Hierarchy
subClassOf relation is always transitive

• Car is a subclass of Vehicle

• Vehicle is a subclass of 
TransportationObject

• Any instance of Car is also a 
TransportationObject

subClassOf is not the same as “part of”
• (see meronymy pattern later this lecture)

rdfs:subClassOf

rdfs:subClassOf

Car

TransportationObject

Vehicle

partOf

Car

Wheel
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Formalisation: Tidy Your Hierarchy
Avoid subClassOf clutter!

• Break down your hierarchy further if you have too many direct subclasses of a class

Staff

Technician Administrator

Research Fellow

Res. Assistant

Senior RF

Professor

Lecturer

Senior Lecturer
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Formalisation: Tidy Your Hierarchy
Avoid subClassOf clutter!

• Break down your hierarchy further if you have too many direct subclasses of a class

Staff

Technician Administrator

Research Fellow Res. Assistant

Senior RF
Professor

Lecturer

Senior Lecturer

Academic

Researcher
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Formalisation: Where to Point my Relation?
Relations should point to the most general class

• But not too general

• e.g relations pointing to Thing!

• And not too specific

• e.g. relations pointing to the bottom of the hierarchy

As a rule of thumb, if the domain or range of a relation is a disjunction (union) of 
classes, some refactoring is probably required
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Formalisation: Where to Point my Relation?

Staff

Technician Administrator

Research Fellow

Res. Assistant

Senior RF
Professor

Lecturer

Senior Lecturer

AcademicResearcher

University

Module

works for

teaches
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Formalisation: Where to Point my Relation?

Staff

Technician Administrator

Research Fellow
Res. Assistant

Senior RF Professor

Lecturer

Senior Lecturer

Academic

Researcher

University

Module

works for

teaches



36

Implementation
• Choose a language

• e.g. RDFS, OWL... 

• Implement it with an ontology editor
• e.g. Protégé, SWOOP, TopQuadrant

• Edit the class hierarchy

• Add relationships

• Add restrictions

• Select appropriate value types, cardinality, etc

• Use a reasoner to check the consistency of your ontology 
• e.g. Racer, Pellet, Fact++, HermiT

• Best to do this as you go along – easier to trace bugs in your modelling
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Evaluation: Verification
Is your ontology correct?

• Is it syntactically correct?

• Is it consistent?

Implementing the ontology in an ontology editor helps to get the syntax correct

Using a reasoner helps you check that it’s consistent

You can also validate your OWL ontology online:

• http://visualdataweb.de/validator/
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Evaluation: Validation
Does your ontology successfully do what you set out to do?

Check the ontology against your competency questions

• Write the questions in SPARQL or in similar query languages

• Can you get the answers you need?

• Is it quick enough? 

• Add additional properties or restructure the ontology to increase efficiency?
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Documentation
Documenting the design and implementation rational is crucial for future usability and 
understanding of the ontology

• Rational, design options, assumptions, decisions, examples, etc.

Structured documentation may clarify these assumptions

Douglas Skuce proposed a convention for structured 
documentation of ontological assumptions in 1995

• Conceptual assumptions (C) 
(long definition, comparing with other classes/properties)

• Terminological assumptions (T) (alternative terms used)

• Definitional assumption (D) (short definition)

• Examples (E)
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Structured documentation
Instead of putting C/T/D/E into a single rdfs:comment, structure the metadata using 
appropriate properties from RDFS and SKOS (import SKOS into your ontology)

Conceptual assumptions (C)
• skos:scopeNote, rdfs:comment

Terminological assumptions (T)
• skos:prefLabel, skos:altLabel, rdfs:label

Definitional assumptions (D)
• skos:definition

Examples (E)
• skos:example

Use rdfs:isDefinedBy to indicate if definition is taken from an external source
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Summary
Ontology construction is an iterative process

• Build ontology, try to use it, fix errors, extend, use again, and repeat

There is no single correct model for your domain
• The same domain may be modelled in several ways

Following best practices helps to build good ontologies
• Well scoped, documented, structured

Reuse existing ontologies if possible
• Check your database models and existing ontologies

• Reuse or learn from existing representations

• (most ontology editing tools don’t yet provide good support for reuse)
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Common Pitfalls
Over scaling and complicating your ontology

• Need to learn when to stop expanding the ontology

Lack of documentation
• For the design rationale, vocabulary and structure decisions, intended use, etc. 

Redundancy 
• Increase chances of inconsistencies and maintenance cost

Using ambiguous terminology 
• Others might misinterpret your ontology

• Mapping to other ontologies will be more difficult



Ontology Design Patterns
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Design Patterns
Patterns are general, reusable solution to 
commonly occurring problems

• Concept originated with Christopher 
Alexander’s work on architecture

• Popularised in software engineering by 
the “gang of four”

• Subject of study by the knowledge 
engineering community
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Design Patterns for the Semantic Web
N-ary relations

• How can we say more about a relation instance?

• How do we represent an ordered sequence of relations?

Value partitions and value sets
• How do we represent a fixed list of values?

Part-whole hierarchies
• How do we represent hierarchies other than the subclass hierarchy?



N-ary Relations
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Binary Relations
In RDF and OWL, binary relations link two individuals, or an individual and a 
value

The properties birthYear and fatherOf are binary relations

Holbein the Elder
birthYear

Holbein the Younger

fatherOf

1460
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Relations with Additional Information

In some cases, we need to associate additional info with a binary relation 
• e.g. certainty, strength, dates

For example, Holbein the Elder’s date of birth is unconfirmed
• He was born in either 1460 or 1465

• How can we represent this uncertainty? 

Holbein the Elder

birthYear 1460

1465birthYear

0.6

0.4

certainty

certainty
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N-ary Relations
N-ary relations link an individual to more than a one value

Possible use cases:

1. A relation needs additional info
e.g. a relation with a rating value

2. Two binary relations are related to each other
e.g. body_temp (high, normal, low), and trend (rising, falling)

3. A relation between several individuals
e.g. someone buys a book from a bookstore

4. Linking from, or to, an ordered list of individuals
e.g. an airline flight visiting a sequence of airports
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N-ary Relation Patterns
Pattern 1: Reified relation

• Use for cases 1, 2, and 3 above

Pattern 2: Sequence of arguments

• For case 4
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Pattern 1: Reified Relation
To represent additional information about a relation:

• Create a new class to represent the relation

• Individuals of this class are instances of the relation

• Relation class can have additional properties to describe more information about the 
relation
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Use case 1: additional information
Jack has given the film ‘I Am Legend’ a four-star rating

• We need to represent a quantitative value to describe the rating relation

Jack

8/10

I am Legend

film

film_rating

Film

Person

Rating
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Jack

8

I am Legend

issued_rating _:Rating_1

rated_object

rating

Person

Film

Rating

Rating_Relation

rated_object
(someValuesFrom, functional)

issued_rating
(allValuesFrom)

rating_value
(allValuesFrom, functional)

Solution for use case 1

bNode
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Use case 2: different aspects of a relation
Steve has a temperature which is high, but falling

• We need to represent different aspects of the temperature that Steve has

Source: W3C
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Use case 3: no distinguished participant
John buys a “Lenny the Lion” book from books.example.com for $15 as a birthday gift

• No distinguished subject for the relation

• i.e. no primary relation to convert into a Relation Class as in cases 1 and 2

Source: W3C
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Solution for use case 3
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Pattern 2: Sequence of arguments
United Airlines, flight 1377 visits the following airports: LAX, DFW, and JFK

• For such an example, we need to represent a sequence of arguments
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Pattern 2: Sequence of arguments
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Value Partitions and Value Sets
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Descriptive Features
Descriptive features are quite common in ontologies:

• Size = {small, medium, large}

• Risk = {dangerous, risky, safe}

• Health status = {good health, medium health, poor health}

Also called “qualities”, “modifiers” and “attributes”
• A property can have only one value for each feature to ensure consistency

Three main approaches:
• Enumerated individuals (a value set)

• Disjoint classes (a value partition)

• Datatype values (not considered in this lecture)
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Value Sets
Values of descriptive feature are individuals
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Value Sets
A health value can be either poor, medium or good:

𝐻𝑒𝑎𝑙𝑡ℎ𝑉𝑎𝑙𝑢𝑒 ≡ { 𝑝𝑜𝑜𝑟𝐻𝑒𝑎𝑙𝑡ℎ,𝑚𝑒𝑑𝑖𝑢𝑚𝐻𝑒𝑎𝑙𝑡ℎ, 𝑔𝑜𝑜𝑑𝐻𝑒𝑎𝑙𝑡ℎ }

Poor, medium and good are all different from each other:
𝑝𝑜𝑜𝑟𝐻𝑒𝑎𝑙𝑡ℎ ≠ 𝑚𝑒𝑑𝑖𝑢𝑚𝐻𝑒𝑎𝑙𝑡ℎ
𝑝𝑜𝑜𝑟𝐻𝑒𝑎𝑙𝑡ℎ ≠ 𝑔𝑜𝑜𝑑𝐻𝑒𝑎𝑙𝑡ℎ

𝑚𝑒𝑑𝑖𝑢𝑚𝐻𝑒𝑎𝑙𝑡ℎ ≠ 𝑔𝑜𝑜𝑑𝐻𝑒𝑎𝑙𝑡ℎ

A healthy person is a person who has some health status which is the value good:
𝐻𝑒𝑎𝑙𝑡ℎ𝑦𝑃𝑒𝑟𝑠𝑜𝑛 ≡ 𝑃𝑒𝑟𝑠𝑜𝑛 ⊓ ∃ℎ𝑎𝑠𝐻𝑒𝑎𝑙𝑡ℎ𝑆𝑡𝑎𝑡𝑢𝑠. { 𝑔𝑜𝑜𝑑𝐻𝑒𝑎𝑙𝑡ℎ }
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Notes on Value Sets
Need axioms to set the three health values to be different from each other

• This way, a person cannot have more than one health value at a time 

Values cannot be further partitioned
• e.g. cannot have fairly_good_health as a subtype of good_health

Only one set of values is allowed for a feature
• The class HealthValue cannot be equivalent to more than one set of distinct values

• Doing so will cause inconsistencies
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Value Partitions
Values of descriptive features are disjoint subclasses:
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Value Partitions
Poor, medium and good are types of health value:

𝑃𝑜𝑜𝑟𝐻𝑒𝑎𝑙𝑡ℎ ⊑ 𝐻𝑒𝑎𝑙𝑡ℎ𝑉𝑎𝑙𝑢𝑒
𝑀𝑒𝑑𝑖𝑢𝑚𝐻𝑒𝑎𝑙𝑡ℎ ⊑ 𝐻𝑒𝑎𝑙𝑡ℎ𝑉𝑎𝑙𝑢𝑒
𝐺𝑜𝑜𝑑𝐻𝑒𝑎𝑙𝑡ℎ ⊑ 𝐻𝑒𝑎𝑙𝑡ℎ𝑉𝑎𝑙𝑢𝑒

Covering axiom (the only types of health value are poor, medium and good):
𝐻𝑒𝑎𝑙𝑡ℎ𝑉𝑎𝑙𝑢𝑒 ≡ 𝑃𝑜𝑜𝑟𝐻𝑒𝑎𝑙𝑡ℎ ⊓ 𝑀𝑒𝑑𝑖𝑢𝑚𝐻𝑒𝑎𝑙𝑡ℎ ⊓ 𝐺𝑜𝑜𝑑𝐻𝑒𝑎𝑙𝑡ℎ

Poor, medium and good are pairwise disjoint:
𝑃𝑜𝑜𝑟𝐻𝑒𝑎𝑙𝑡ℎ ⊓ 𝑀𝑒𝑑𝑖𝑢𝑚𝐻𝑒𝑎𝑙𝑡ℎ ≡ ⊥
𝑃𝑜𝑜𝑟𝐻𝑒𝑎𝑙𝑡ℎ ⊓ 𝐺𝑜𝑜𝑑𝐻𝑒𝑎𝑙𝑡ℎ ≡ ⊥

𝑀𝑒𝑑𝑖𝑢𝑚𝐻𝑒𝑎𝑙𝑡ℎ ⊓ 𝐺𝑜𝑜𝑑𝐻𝑒𝑎𝑙𝑡ℎ ≡ ⊥

A healthy person is a person who has some health status which is an instance of good
𝐻𝑒𝑎𝑙𝑡ℎ𝑦𝑃𝑒𝑟𝑠𝑜𝑛 ≡ 𝑃𝑒𝑟𝑠𝑜𝑛 ⊓ ∃ℎ𝑎𝑠𝐻𝑒𝑎𝑙𝑡ℎ𝑆𝑡𝑎𝑡𝑢𝑠. 𝐺𝑜𝑜𝑑𝐻𝑒𝑎𝑙𝑡ℎ
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Value Partitions
The instance JohnsHealth can be made anonymous
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Notes on Value Partitions
Values can be further partitioned

• Simply add subclasses to the value classes

Can have alternative partitions of the same feature

OWL 2 contains specific support for defining disjoint unions
𝐶 ≡ 𝐶! ⊔ 𝐶" ⊔⋯⊔ 𝐶#

𝐶! ⊓ 𝐶" ≡ ⊥
𝐶! ⊓ 𝐶$ ≡ ⊥

…
𝐶#%! ⊓ 𝐶# ≡ ⊥



Part-Whole Hierarchies
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Meronymies (part-whole relations)
Taxonomies are not the only hierarchical relation that we wish to model

• A spark plug isn’t a kind of engine (class-instance)

• A spark plug is a part of an engine
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Simple Part-Whole Representation
We need two properties:

• partOf (a transitive property)

• directPartOf (a subproperty of partOf)

part of ∘ partOf ⊑ partOf
directPartOf ⊑ partOf
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Part-Whole Hierarchies
Represent part-whole relationships between classes using existential restrictions:

Every spark plug is a direct part of some engine: SparkPlug ⊑ ∃directPartOf. Engine

Every engine is a direct part of some car: Engine ⊑ ∃directPartOf. Car

Every wheel is a direct part of some car: Wheel ⊑ ∃directPartOf. Car
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Defining Classes of Parts
Extend the ontology with classes of parts for each level, so that the reasoner can 
automatically derive a class hierarchy:

A car part is a part of some car: CarPart ≡ ∃partOf. Car

A direct car part is a direct part of some car: DirectCarPart ≡ ∃directPartOf. Car

An engine part is a part of some engine: EnginePart ≡ ∃partOf. Engine

A reasoner will infer that EnginePart ⊑ CarPart (but not EnginePart ⊑ DirectCarPart)
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Fault Location
Once we have a meronymy, we can use it to inherit features within that hierarchy

For example, a reasoner could infer that a fault in a part is a fault in a whole
• Need a new property for the location of a fault: hasLocus
• Need a new class for faults: Fault

We can then define general types of located faults:

FaultInCar ≡ Fault ⊓ ∃hasLocus. CarPart
FaultInEngine ≡ Fault ⊓ ∃hasLocus. EnginePart
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Fault Location
Now we can define specific types of located fault:

DirtySparkPlug ⊑ Fault ⊓ ∃hasLocus. SparkPlug
FlatTyre ⊑ Fault ⊓ ∃hasLocus.Wheel

The definition of the hierarchy allows a reasoner to infer that:

DirtySparkPlug ⊑ FaultInCar
DirtySparkPlug ⊑ FaultInEngine

FlatTyre ⊑ FaultInCar

But not:
FlatTyre ⊑ FaultInEngine



Further Reading
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SWBP Notes
Defining N-ary Relations on the Semantic Web
http://www.w3.org/TR/swbp-n-aryRelations

Representing Specified Values in OWL
http://www.w3.org/TR/swbp-specified-values

Simple part-whole relations in OWL Ontologies 
http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/


