

Data Storage
COMP3211 Advanced Databases

Dr Nicholas Gibbins - nmg@ecs.soton.ac.uk

3

Overview
• Storage Organisation

• Secondary storage

• Buffer management

• The Five-Minute Rule

• Disk Organisation
• Data Items

• Records

• Blocks

Storage Organisation

5

The Memory Hierarchy

Cache

Main
Memory

Secondary
Storage

Tertiary Storage

6

The Memory Hierarchy: Cache
Volatile storage

Very fast, very expensive, limited capacity

Hierarchical

Typical capacities and access times:
• Registers – ~101 bytes, 1 cycle

• L1 – ~104 bytes, <5 cycles

• L2 – ~105 bytes, 5-10 cycles

Cache

Main
Memory

Secondary
Storage

Tertiary Storage

7

The Memory Hierarchy: Main Memory
Volatile storage

Fast, affordable, medium capacity

Typical capacity: 109-1010 bytes

Typical access time: 10-8 s (20-30 cycles)

Cache

Main
Memory

Secondary
Storage

Tertiary Storage

8

The Memory Hierarchy: Secondary Storage
Non-volatile storage

Slow, cheap, large capacity

Typical capacity: 1011-1012 bytes

Typical access time: 10-3 s (106 cycles)

Cache

Main
Memory

Secondary
Storage

Tertiary Storage

9

The Memory Hierarchy: Tertiary Storage
Non-volatile storage

Very slow, very cheap, very large capacity

Typical capacity: 1013-1017 bytes

Typical access time: 101-102 s

Cache

Main
Memory

Secondary
Storage

Tertiary Storage

Secondary Storage

11

Hard Disk Drives
Typical secondary storage medium for
databases

12

platter/disk
(surfaces on
both sides)

actuator

spindle

head

arm

13

Disk Structure

geometrical sector

track sector

track

cluster

cylinder is the same
track on all surfaces

14

Zone Bit Recording
Tracks closer to the disc edge are longer
than those closer to the axis

• Bit densities vary in order to ensure a
constant number of bits per sector

Instead, we can vary the number of
sectors per track (depending on track
location)

• Improves overall storage density

• A hybrid of constant linear velocity (CLV)
and constant angular velocity (CAV)

15

Disk Sector Format
Terms:

• Gap – separator between sectors

• Sync – indicates start of sector

• Address mark – indicates sector’s number/location

• ECC – error correcting code (may be distributed)

For 4k Advanced Format:
• gap+sync+mark = 15 bytes

• data = 4096 bytes

• ecc = 100 bytes

• 2.7% overhead

sync data eccgap mark

16

Disk Access Time: Reading
Access Time = Seek Time +

Rotational Delay +
Transfer Time

block requested

block in memory

access time

17

Seek Time
Time taken for head assembly to move to
a given track

Average seek time range:
• 4ms for high end drives

• 15ms for mobile devices

18

Rotational Delay (Latency)
Average delay = time for 0.5 rev

rotational speed
[rpm]

average delay
[ms]

4,200 7.14

5,400 5.56

7,200 4.17

10,000 3.00

15,000 2.00

19

Transfer Time
Transfer rate ranges from:

• up to 1000 Mbit/sec

• 432 Mbit/sec 12x Blu-Ray disk

• 1.23 Mbits/sec 1x CD

• for SSDs, limited by interface
e.g., SATA 3000 Mbit/s

Transfer time = block size / transfer rate

20

Sequential Access
So far, random access - what about reading “next” block?

Access time = (block size / transfer rate) + negligible costs

Negligible costs:
• skip inter-block gap

• switch track (within same cylinder)

• switch to adjacent cylinder occasionally

• In general, sequential i/o is much less expensive than random i/o

21

Disk Access Time: Writing
Costs similar to those for reading, unless we wish to verify data

Verifying requires that we read the block we’ve just written

Access Time = Seek Time +
Rotational Delay (1/2 rotation) +
Transfer Time (for writing) +
Rotational Delay (full rotation) +
Transfer Time (for verifying)

22

Disk Access Time: Modifying
1. Read Block
2. Modify in Memory

3. Write Block

4. Verify Block (optional)

23

Disk Access Time: Modifying
Access Time = Seek Time +

Rotational Delay (1/2 rotation) +
Transfer Time (for reading) +
Rotational Delay (full rotation) +
Transfer Time (for writing) +
[Rotational Delay (full rotation) +

Transfer Time (for verifying)
]

24

Block Addressing
Cylinder-head-sector

• Physical location of data on disk

• ZBR causes problems (sectors vary by tracks)

Logical Block Addressing
• Blocks located by integer index

• HDD firmware maps LBA addresses to physical locations on disk

• Allows remapping of bad blocks

25

Block Size Selection?
The size of blocks affects I/O efficiency:

Big blocks reduce the costs of access
• Fewer seeks (seek time + rotational delay) for the same amount of data

Big blocks also increase the amount of irrelevant data read
• If you’re trying to read a single record in a block, larger blocks force you to read more data

26

But what about Solid State Drives?

27

Solid State Drives
• Typically based on NAND flash memory

• More expensive than HDD (~4-5x)
• Getting cheaper over time

• Global SSD production is expected to exceed HDD production in 2021

• Typically smaller maximum size than HDD (~1-2TB)

• Considerably higher I/O performance

• Asymmetric read/write performance (writes are slower)

• Limited number of program-erase cycles (~100,000 – wear levelling used)

28

HDD versus SSD
Random I/Os per second (IOPS) = 1/ (seek + latency + transfer)

HDD * SSD **

Random Read IOPS 125-150 IOPS ~50,000 IOPS

Random Write IOPS 125-150 IOPS ~40,000 IOPS

* Assumes 10,000 rpm HDD with SATA 3Gb/s interface
** OCZ 480GB Vertex 3 (c. 2012) with SATA 6Gb/s interface

Buffer Management

30

The Buffer Pool
Far more blocks of secondary storage than space in main memory – need to be
selective about what’s kept in memory

Buffer pool organised into frames (size of database block, plus metadata)

X

disk buffer
pool

higher-level
code

X

X

31

Buffer Metadata
Each frame in the buffer pool has:

• a pin count (number of current users of the block in that frame)

• a dirty flag (1 if the copy in the buffer has been changed, 0 otherwise)

• an access time (optional – used for LRU replacement)

• a loading time (optional – used for FIFO replacement)

• a clock flag (optional – used for Clock replacement)

32

Requesting a Block
if buffer pool already has a frame containing the block
then increment pin count (“pin the block”)
else if there is an empty frame

then read block into empty frame and set pin count to 1
else choose a frame to be replaced

if dirty bit on the replacement frame is set
then write block in replacement frame to disk
endif
read block into replacement frame and set pin count to 1

endif
endif

33

Buffer Replacement Strategies
A frame will not be selected for replacement until its pin count is 0

If there’s more than one frame with a pin count of 0, use a replacement strategy to
choose the frame to be replaced

• Least Recently Used (LRU)
Select the frame with the oldest access time

• First In First Out (FIFO)
Select the frame with the oldest loading time

• Clock
Approximation of LRU – cycle through each buffer in turn, if a buffer hasn’t been accessed
in a full cycle then mark it for replacement

34

Single Buffering
1. Read B1 ® Buffer

2. Process Data in Buffer

3. Read B2 ® Buffer

4. Process Data in Buffer ...

35

Single Buffering

Buffer

Disk B1 B2 B3 B4 B5 B6 B7 B8

load from disk

36

Single Buffering

Buffer

Disk B1 B2 B3 B4 B5 B6 B7 B8

B1 process block

37

Single Buffering

Buffer

Disk B1 B2 B3 B4 B5 B6 B7 B8

load from disk

38

Single Buffering

Buffer

Disk B1 B2 B3 B4 B5 B6 B7 B8

process blockB2

39

Single Buffering

Buffer

Disk B1 B2 B3 B4 B5 B6 B7 B8

load from disk

40

Single Buffering Cost
Single buffer time = n(P + R)

where P = time to process a block
R = time to read a block
n = number of blocks

41

Double Buffering
Use a pair of buffers:

• While reading a block and writing into buffer A

• Process block previously read into buffer B

• After block read into A, process A and read next block into B

42

Double Buffering

Buffer

Disk B1 B2 B3 B4 B5 B6 B7 B8

load from disk

43

Double Buffering

Buffer

Disk B1 B2 B3 B4 B5 B6 B7 B8

load from disk

B1

process block

44

Double Buffering

Buffer

Disk B1 B2 B3 B4 B5 B6 B7 B8

load from disk

B2

process block

45

Double Buffering

Buffer

Disk B1 B2 B3 B4 B5 B6 B7 B8

load from disk

B3

process block

46

Double Buffering
If time to process a block > time to read a block:

Double buffer time = R + nP

Single buffer time = n(R+P)

The Five Minute Rule

48

The Five Minute Rule

Data referenced every five minutes
should be memory resident

49

The Five Minute Rule
The Five Minute Rule for trading memory for disc accesses
Jim Gray & Franco Putzolu
May 1985

The Five Minute Rule, Ten Years Later
Goetz Graefe & Jim Gray
December 1997

The five-minute rule 20 years later (and how flash memory changes the rules)
Goetz Graefe
July 2009

The Five-Minute Rule 30 years later, and its impact on the storage hierarchy
Raja Appuswamy, Goetz Graefe, Renata Borovica-Gajic and Anatasia Ailamaki
November 2019

50

The Five Minute Rule
Assume a block is accessed every X seconds:

CD = cost if we keep that block on disk
• $D = cost of disk unit

• I = number of IOs that unit can perform per second

• In X seconds, unit can do XI IOs

• So, CD = $D / XI

51

The Five Minute Rule
Assume a block is accessed every X seconds:

CM = cost if we keep that block in RAM
• $M = cost of 1MB of RAM

• P = number of pages in 1MB RAM

• So CM = $M / P

52

The Five Minute Rule
Assume a block is accessed every X seconds:

If CD is smaller than CM,
• keep block on disk

• else keep in memory

Break even point when CD = CM, or X = ($D P) / (I $M)

53

Using 1997 numbers
P = 128 blocks/MB (8KB pages)

I = 64 accesses/sec/disk

$D = $2000/disk (9GB HDD + controller)

$M = $15/MB of RAM

X = 266 seconds (about 5 minutes)
(did not change much from 1985 to 1997)

54

Using 2007 numbers
P = 256 blocks/MB (4KB pages)

I = 83 accesses/sec/disk (12ms to read 4KB)

$D = $80/disk (250GB SATA HDD)

$M = $0.047/MB of RAM

X = 5,248 seconds (about 1.5 hours)

55

Using 2007 numbers
P = 256 blocks/MB (4KB pages)

I = 6,200 accesses/sec/disk (0.16ms to read 4KB)

$D = $999/disk (32GB SSD)

$M = $0.047/MB of RAM

X = 876 seconds (about 15 minutes)

56

Using 2016 numbers
P = 256 blocks/MB (4KB pages)

I = 64,000 accesses/sec/disk (0.015ms to read 4KB)

$D = $685/disk (240GB SSD)

$M = $0.034/MB of RAM

X = 805 seconds (about 13.5 minutes)

57

The changing memory hierarchy
The falling price of SSD makes it a viable tier between the performance of DRAM and
the capacity of HDDs

• The break-even for DRAM-SSD on modern systems is again ~5 minutes
(the DRAM-HDD case is now about 4 hours)

• The break-even for SSD-HDD is now about 1.5 *days*

• The energy costs of DRAM are much greater (>10x) than SSD

• The energy costs of HDD are much greater than tape (idling consumption)

• Likely transition to NVDIMM memory (DRAM+NAND flash)

1987 1997 2007 2018

DRAM $5000 $14.6 $0.05 $0.005

HDD $83 $0.22 $0.0003 $0.00002

SDD $0.03 $0.0005

Disk Organisation

59

Overview
• Data Items

• Records

• Blocks

• Files

Data Items

61

Data Items
We might wish to store:

• a salary

• a name

• a date

• a picture

We have: bytes

8 bits

62

Representing numbers
Integer (short): 2 bytes

• e.g. 57 is

Real numbers: IEEE 754 (floating point)
• 1 bit sign, n bits for mantissa, m bits for exponent

0 0 0 00 0 0 0 1 0 0 10 0 1 1

63

Representing characters
Various coding schemes: ASCII, utf-8

• ‘A’

• ‘c’

• CR

0 0 0 10 1 0 0

0 0 1 10 1 1 0

1 1 0 10 0 0 0

64

Representing booleans
1 byte per value

• True

• False

We can pack more than one value per byte, if we’re desperate

0 0 0 00 0 0 0

1 1 1 11 1 1 1

65

Representing dates
Days since a given date (integer)

• 1st Jan 1900

• 1st Jan 1970 (UNIX epoch)

ISO8601 dates
• Calendar dates: YYYYMMDD (8 characters)

• Ordinal dates: YYYYDDD (7 characters)

66

Representing times
Seconds since midnight (integer)

ISO8601 times
• HHMMSS (6 characters)

• HHMMSSFF (8 characters, to represent fractional seconds)

67

Representing strings
Null terminated

Length given

Fixed length

...E C S

...3 E C S

E C S

68

Representing bit arrays

bitslength

69

In general...
Data items are either

• Fixed length (integers, characters, etc)

• Variable length (strings, bit arrays) usually with length given at start

May also include type of data item
• Tells us how to interpret the item

• Tells us size, if fixed

Records

71

Records
Collection of related data items (fields)

e.g. Employee record consists of:

• name field

• salary field

• employment start date field

72

Record types
Records may have fixed or variable formats

Records may have fixed or variable lengths

73

Fixed format records
Schema describes the structure of records:

• number of fields

• types of fields

• order in record

• meaning of each field

74

Example: Fixed format record
Employee record structure:

1. e#, 2 byte integer

2. name, 10 char

3. dept, 2 byte code

records

schema

s m i t h 0 25 5

j o n e s 0 18 3

75

Variable format records
Schema-less format

• Record itself contains format: “self-describing”

Useful for sparse records, repeating fields, evolving formats

May waste space compared to a fixed format records

76

Example: Variable format record

2 5 I 4 6 4 S 4 F o r dno. of fields

code identifying field as e#

integer type

string type

string length

code identifying field as name

77

Record headers
Data at beginning of record that describes record:

• record type (points to schema)

• record length

• timestamp

Intermediate between fixed and variable format

Blocks

79

Storing records in blocks

s m i t h 0 25 5

j o n e s 0 18 3

j o n e s 0 18 3

s m i t h 0 25 5

j o n e s 0 18 3

...

2 5 I 4 6 4 S 4 F o r d

2 5 I 4 6 4 S 4 F o r d
records

blocks

file

80

Block header
Data at beginning that describes block

May contain:
• File ID (or RELATION or DB ID)

• This block ID

• Record directory

• Pointer to free space

• Type of block (e.g. contains recs type 4; is overflow, …)

• Pointer to other blocks “like it”

• Timestamp ...

81

Placing records in blocks
Considerations:

• separating records

• spanned vs. unspanned

• sequencing

• indirection

82

Separating records in a block
Three approaches:

1. use fixed length records - no need to
separate

2. use a special marker to indicate record
end

3. give record lengths (or offsets)

• within each record

• in block header

R2 R3R1

83

Spanned vs. Unspanned
Unspanned: each record must fit within a single block

Spanned: records may be split between blocks

R1 R2 R3 R4 R5

R3aR1 R2 R3b R4 R5

84

Spanned records

R3aR1 R2 R3b R4 R5

need indication
of partial record
“pointer” to rest

need indication
of continuation
(from where?)

85

Spanned vs. Unspanned
Unspanned records are much simpler, but may waste space…

Spanned records are essential if record size > block size

86

Sequencing
Sequencing: ordering records in file (and block) by some key value

Makes it possible to efficiently read records in order
• e.g., to do a merge-join — discussed later in module

87

Sequencing Options
Next record physically contiguous:

Linked records:

R2R1

R1 R2

R3

88

Sequencing Options

R1

R2

R3

R4

R5

Records
in sequence

header

R2.1

R1.3

R4.7

Overflow area

89

Indirection
How do we refer to records?

Many options:
• physical addressing

• indirect addressing

• other options in between

Tradeoff between:
• flexibility (easier to move records on

insertion/deletion)

• cost (of maintaining indirection)

Rx

90

Physical Addressing

Record ID =

Device
Cylinder
Head
Sector
Offset in block

Block ID

91

Indirect Addressing

Record ID is arbitrary bit string

id
physical
address

Record
ID

Physical
Address

map

92

Indirection in block
Typical implementation

• Records can be shifted within block without changing record ID

• Access to a given record ID is fast – only a single block access needed

offset
table

block ID offset

record ID

#entries record 1free space record 2record 3record 4 record 2

93

Address Management
Every block and record has two addresses:

• a database address (when in secondary storage)

• a memory address (when copied into a buffer)

Translation table records mapping from database addresses to memory addresses:

When in a buffer, using only memory addresses (= pointers) is more efficient

DB address Memory address

94

Pointer Swizzling
General term for techniques used to translate database address space to virtual
memory address space

Swizzled pointers typically consist of
• One bit to indicate whether the pointer is a database address or a memory address

• A database or memory pointer, as appropriate

Translation table is used to convert pointers (and to record the conversion)

95

Block 2

Block 1

Swizzling

B

A Bd Cd

C

DiskBuffer

database pointer

memory pointer

96

Block 2

Block 1

Swizzling

B

A Bd Cd

C

DiskBuffer

database pointer

memory pointer

Block 1

B

A Bd Cd
load into
buffer

97

Block 2

Block 1

Swizzling

B

A Bd Cd

C

DiskBuffer

database pointer

memory pointer

Block 1

B

A Bm Cd
swizzled
pointer

98

Block 2

Block 1

Swizzling

B

A Bd Cd

C

DiskBuffer
Block 1

B

A Bm Cd

Block 2

C load into
buffer

99

Block 2

Block 1

Swizzling

B

A Bd Cd

C

DiskBuffer
Block 1

B

A Bm Cm

Block 2

C

swizzled
pointer

100

Swizzling Strategies
Automatic

• As soon as block brought into memory, locate all pointers and addresses and enter them
into translation table

• Replace pointers in blocks with new entries

On Demand
• Leave all pointers unswizzled when block in brought into memory

• Swizzle pointers only when dereferenced

No swizzling
• Use translation table to map pointers on each dereference

101

Unswizzling
Reverse of the swizzling operation – rewrite memory addresses as database addresses

• Use the translation table

• Translation table is designed to map from DB address to memory address – need an index

Need to be aware of the relationship between unswizzling and unpinning
• Blocks in the buffer pool are pinned to indicate that some part of the DBMS is using their

contents

• However, a block may be pinned if there are swizzled pointers that point to that block

• In order to unpin the block (to allow the frame to be reused), we need to unswizzle any
pointers to that block

102

Block 2

Block 1

Swizzling

B

A Bd Cd

C

DiskBuffer
Block 1

B

A Bm Cm

Block 2

C

103

Block 2

Block 1

Swizzling

B

A Bd Cd

C

DiskBuffer
Block 1

B

A Bm Cd

Block 2

C
block to unpin
and write unswizzled

pointer

104

Block 2

Block 1

Swizzling

B

A Bd Cd

C

DiskBuffer
Block 1

B

A Bm Cd

Block 2

C

write to disk

Insertion and Deletion

106

Insertion: the easy case
Records not in sequence

• Insert new record at end of file or in deleted slot

• If records are variable size, not as easy...

107

Insertion: the hard case
Records in sequence

• If free space “close by”, not too bad...

• Or use overflow idea...

108

Insertion considerations
How much free space should we leave:

• In each block?

• In each track?

• In each cylinder?

How often should we reorganise files?

Free
space

109

Deletion
Two main options:

• Immediately reclaim space

• Mark space as deleted
Rx

block

110

Deletion marking
May need a chain of deleted records (for re-use)

Need a way to mark deleted records:
• special characters

• delete field

• in map

111

Deletion tradeoffs
How expensive is it to move valid record to free space for immediate reclaim?

How much space is wasted?
• e.g., deleted records, delete fields, free space chains,...

112

Deletion considerations
How do we deal with dangling pointers?

R1 ?

113

Tombstones
Leave “MARK” in map or old location

Physical IDs

this space
never reused

this space
may be reused

114

Tombstones
Leave “MARK” in map or old location

Logical IDs ID LOC

7788

map

Never reuse
ID 7788 nor
space in map...

Further Reading

116

Further Reading
• Chapter 13 of Garcia-Molina et al

• Gray, J. and Putzolu, F. 1987. The 5 minute rule for trading memory for disc accesses
and the 10 byte rule for trading memory for CPU time. Proceedings of SIGMOD 1987,
395-398.

• Gray, J. and Graefe, G. 1997. The five-minute rule ten years later, and other computer
storage rules of thumb. SIGMOD Record. 26(4), 63-68.

• Graefe, G. 2009. The five-minute rule 20 years later (and how flash memory changes
the rules). Communications of the ACM. 52(7), 48-59.

• Appuswamy, R., Graefe. G., Borovica-Gajic. R. and Ailamaki. A. 2019. The Five-Minute
Rule 30 years later, and its impact on the storage hierarchy. Communications of the
ACM 62(11), pp. 114-120.

Next Lecture: Access Structures

