
Fourier Series and their Applications

The functions 1, cos x, sin x, cos 2x, sin 2x, · · · are orthogonal over (−π, π).
∫ π

−π
cosmx cosnxdx =











0 m 6= n

π m = n 6= 0
2π m = n = 0

∫ π

−π
cosmx sinnxdx = 0 for all m,n

∫ π

−π
sinmx sinnxdx =

{

0 m 6= n

π m = n 6= 0
In fact the functions satisfy these relations over any interval (α, α + 2π).
Assuming that f(x), defined and integrable in (−π, π), has an expansion.
1

2
a0 +

∞
∑

n=1

(an cosmx+ bn sinnx)

uniformly convergent over (−π, π)
∫ π

−π
f(x)dx = πa0

∫ π

−π
f(x) cosnxdx = πan therefore an + ibn =

1

π

∫ π

−π
f(x)einxdx

∫ π

−π
f(x) sinnxdx = πbn

These coefficients exist irrespective of whether or not the series converges
and is equal to f(x), and they are called the Fourier coefficients.

Sufficient Conditions for convergence

a) If f(x) is differentiable at ξ (or if ∃m, such that

∣

∣

∣

∣

∣

f(x)− f(ξ)

x− ξ

∣

∣

∣

∣

∣

< m,

xε(ξ − h, ξ + h)) then the fourier series converges at ξ to f(ξ).

b) If f(x) is monotonic in ξ < x < ξ + h and in ξ − h < x < ξ for some
h > 0, then the fourier series converges at ξ to the value
1
2
{f(ξ − 0) + f(ξ + 0)}.
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General Range

The range a ≤ x ≤ b is standardised by substituting X =
π
(

x− a+b
2

)

(

b−a
2

)

then −π < X < π.

The series
1

2
a0 +

∞
∑

n=1

an cosnX + bn sinnX

becomes
1

2
a0 +

∞
∑

n=1

an cos 2nπ

(

2x− (a+ b)

b− a

)

+ bn sin 2nπ

(

2x− (a+ b)

b− a

)

Periodicity of f(x)
We suppose that f(x) is represented by the series (when cgt.) for all x,
hence since the sum function of the series is periodic, with period 2π, we
have f(x+ 2π) = f(x) which defines f(x) outside the original range.

Fourier Series for 1
2
− t (0 < t < 1)

First consider the identity

1 +
m
∑

n=1

enix =
e(m+1)ix − 1

eix − 1
=
e(m+ 1

2)ix − e−
1

2
ix

2i sin 1
2
x

=
cos

(

m+ 1
2

)

x+ i sin
(

m+ 1
2

)

x−
(

cos 1
2
x− i sin 1

2
x
)

2i sin 1
2
x

Hence for x real (x 6= 0,±2π, · · ·) taking real and imaginary parts:

Re : 1 +
m
∑

n=1

cosnx =
1

2
+

1

2

sin
(

m+ 1
2

)

x

sin 1
2
x

or
1

2
+

m
∑

n=1

cosnx =
1

2

sin
(

m+ 1
2

)

x

sin 1
2
x

(1)

Im : −
1

2
cot

1

2
x+

m
∑

n=1

sinnx = −
1

2

cos
(

m+ 1
2

)

x

sin 1
2
x

(2)

Integrate (1) and (2) from x to π

(1):
1

2
(π − x)−

m
∑

n=1

sinnx

n
=

1

2

∫ π

x

sin
(

m+ 1
2

)

t

sin 1
2
t

dt (3)

(2):
[

− log
(

sin
1

2
t

)]π

x

+

[

m
∑

n=1

− cosnt

n

]π

x

= −
1

2

∫ π

x

cos
(

m+ 1
2

)

t

sin 1
2
t

dt (4)

Now suppose δ ≤ x ≤ 2π − δ.
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Then using the Riemann Lebesgue theorem, we have, letting m→∞ in (3)
and (4)
1

2
(π − x) =

∞
∑

n=1

sinnx

n
(5)

log sin
1

2
x−

∞
∑

n=1

(−1)n

n
+

∞
∑

n=1

cosnx

n
= 0

Therefore log 2 sin
1

2
x = −

∞
∑

n=1

cosnx

n
(6)

Alternative Proof of (5) and (6)

log(1− ξ) = −
∫ ξ

0

dt

1− t
where we take a cut along the positive real axis in the t-plane from 1 to ∞.
The branch of log(1 − ξ) chosen is that which is real when ξ is real, and is
one-valued in the cut plane. In particular this vanishes at ξ = 0
1

1− t
= 1 + t+ · · ·+ tm−1 +

tm

1− t

therefore
∫ ξ

0

dt

1− t
=

m
∑

n=1

ξn

n
+
∫ ξ

0

tm

1− t
dt

where the path is taken along the radius 0− ξ.
DIAGRAM
For all t on the radius through ξ
|1− t| ≥ | sin θ| Re(ξ) > 0

≥ 1 otherwise
Hence in all cases |1− t| ≥ sin δ when δ ≤ arg ξ ≤ 2π − δ (0 < δ < π)

Therefore

∣

∣

∣

∣

∣

∫ ξ

0

tm

1− t
dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ r

0

(peiθ)meiθ

1− t
dp

∣

∣

∣

∣

∣

≤
∫ r

0

pm

| sin δ|
dp =

1

sin δ

rm+1

m+ 1
≤

1

(m+ 1) sin δ
0 ≤ r ≤ 1

Hence lim
m→∞

∣

∣

∣

∣

∣

∫ ξ

0

tmdt

1− t

∣

∣

∣

∣

∣

= 0 δ ≤ arg ξ ≤ 2π − δ

0 ≤ r ≤ 1
When r = 1 the convergence is uniform with respect to θ. Hence we have

log(1− ξ) = −
∞
∑

n=1

ξn

n

Where the series converges on |ξ| = 1 except at ξ = 1, uniformly in
δ ≤ arg ξ ≤ 2π − δ
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log(1− ξ) = log |1− ξ|+ i arg(1− ξ)

= log
(

2 sin
1

2
θ

)

− i

(

π

2
−
θ

2

)

Taking real and imaginary parts gives
1

2
π − θ =

∞
∑

1

sinnθ

n

log
(

2 sin
1

2
θ

)

= −
∞
∑

1

cosnθ

n
0 < θ < 2π

Convergence being uniform in δ ≤ θ ≤ 2π − δ.

Fourier Expansion of the Bernoulli polynomials in 0 ≤ t ≤ 1. Values of the
Bernoulli numbers.

Put x = 2πt in
1

2
(π − x) =

∞
∑

1

sinnx

n

Therefore t−
1

2
= −

1

π

∞
∑

1

sin 2πnt

n

= −2
∞
∑

1

sin 2πnt

2πn
(1) 0 < t < 1

Therefore P1(t) = −2
∞
∑

1

sin 2πnt

2πn
P ′2(t) = P1(t) P2(0) = 0

Therefore P2(t) =
∫ t

0
P1(s)ds

The series (1) converges uniformly in ε ≤ t ≤ 1− ε
∫ t

ε
P1(s)ds = −2

∞
∑

1

∫ t

ε

sin 2nπs

2nπ
ds ε ≤ t ≤ 1− ε

= −2
∞
∑

1

cos 2nπε− cos 2nπt

(2nπ)2

The series on the right converges absolutely and uniformly since
∣

∣

∣

∣

∣

cos(2nπt)

(2nπ)2

∣

∣

∣

∣

∣

≤
1

(2nπ)2
and

∑ 1

n2
converges.

Hence
∫ t

0
P1(s)ds = −2

∞
∑

1

1− cos 2nπt

(2nπ)2
0 ≤ t ≤ 1

(using continuity)

Hence P2(t) = P̄2 + 2
∞
∑

1

cos 2nπt

(2nπ)2
(2)
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P̄2 = −2
∞
∑

1

1

(2nπ)2
=

−2

(2π)2
S2

Next P ′3(t) = P2(t)− P̄2

Therefore P3(t) = 2
∞
∑

1

sin 2nπt

(2nπ)3

and generally we have

P2m(t)− ¯P2m = (−1)m−12
∞
∑

m=1

cos 2nπt

(2nπ)2m

P2m+1(t) = (−1)m−12
∞
∑

m=1

sin 2nπt

(2nπ)2m+1

¯P2m = (−1)m
2S2m

(2π)2m

We also have
φm(t)

m!
= Pm(t) m = 2, 3, · · ·

Bm

(2m)!
= (−1)m ¯P2m

For k ≥ 2 it can be shown that

1 ≤ Sk ≤ 1 +
1

2k−2
(S2 − 1)

Therefore Sk = 1 + o(k)

Also P2m+1(t) ∼ (−1)m−1 2

(2π)2m+1
sin 2πt

P2m(t) ∼ (−1)m−1 2

(2π)m
(1− cos 2πt)

Fourier Series of the Square Wave

We have
1

2
(π − x) =

∞
∑

n=1

sinnx

n
0 < x < 2π

Write y = x− π

−
1

2
y =

∞
∑

n=1

(−1)n
sinny

n
− π < y < π

x = 2
∞
∑

n=1

(−1)n−1 sinnx

n
− π < x < π

Write f(x) = 2
∞
∑

n=1

(−1)n−1 sinnx

n
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Graph of f(x) is shown by solid lines.
Graph of f(x+ π) is shown by broken lines.
Graph of f(x)− f(x+ π) is shown by dotted lines.
The fourier series of f(x)− f(x+ π) is then

2
∞
∑

n=1

(−1)n
sinnx

n
− 2

∞
∑

n=1

(−1)n−1(−1)n
sinnx

n

= 4
∞
∑

n=0

sin(2n+ 1)x

2n+ 1

4

π

∞
∑

n=0

sin(2n+ 1)x

2n+ 1
=

{

+1 0 < x < π

−1 −π < x < 0
Find coefficients by direct integration.

Gibbs’ Phenomenon

Write Sm(x) =
4

π

m
∑

n=0

sin(2n+ 1)x

2n+ 1
π

4

d

dx
Sm(x) =

m
∑

n=0

cos(2n+ 1)x =
sin(2m+ 2)x

2 sin x

This vanishes in o < x < π at x =
π

2m+ 2
· · ·

(2m+ 1)π

2m+ 2
Sm(x) is symmetrical about π

2
.

Hence consider the value of Sm for 0 < x < π
2
, and in particular at

x =
π

2m+ 2
, the first max.

π

4
Sm

(

π

2m+ 2

)

=
∫ π

2m+2

0

sin(2m+ 2)t

2 sin t
dt

Put t =
s

2m+ 2
then we have
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π

4
sin

(

π

2m+ 2

)

=
1

2

∫ π

0

sin sds

(2m+ 2) sin s
2m+2

=
1

2

∫ π

0

sins

s
φ

(

s

2m+ 2

)

ds

where φ(u) =
u

sinu
.

Now 1 ≤ φ(u) ≤ φ(δ) 0 ≤ u ≤ δ < π and 0 ≤
s

2m+ 2
≤ π2m+ 2

So 1 ≤ φ

(

s

2m+ 2

)

≤ φ

(

π

2m+ 2

)

1 ≥
sin s

s
≥ 0 in 0 ≤ s ≤ π

Hence
∫ π

0

sin s

s
ds ≤

∫ π

0

sin s

s
φ

(

s

2m+ 2

)

ds

≤ φ

(

π

2m+ 2

) ∫ π

0

sin s

s
ds

Since lim
m→∞

φ

(

π

2m+ 2

)

= 1 we have

lim
m→∞

∫ π

0

sin s

s
φ

(

s

2m+ 2

)

ds =
∫ π

0

sin s

s
ds

Hence lim
m→∞

Sm

(

π

2m+ 2

)

=
2

π

∫ π

0

sin s

s
ds ≈ 1.179 > 1

Dirichlet’s Formula (sufficient conditions for convergence)
Assume that f(x) is bounded and integrable over [−π, π], and
f(x+ 2π) = f(x)

Write Sm(x) =
1

2
a0 +

m
∑

n=1

(an cosnx+ bn sinnx)

=
1

π

∫ π

−π
f(t)

[

1

2
+

m
∑

n=1

(cosnt cosnx+ sinnt sinnx)

]

dt

=
1

π

∫ π

−π
f(t)

[

1

2
+

m
∑

n=1

cosn(t− x)

]

dt

=
1

2π

∫ π

−π
f(t)

sin
(

m+ 1
2

)

(t− x)

sin 1
2
(t− x)

dt

=
1

2π

∫ π−x

−π−x
f(x+ s)

sin
(

m+ 1
2

)

s

sin 1
2
s

ds

=
1

2π

∫ π

−π
f(x+ s)

sin
(

m+ 1
2

)

s

sin 1
2
s

ds by periodicity

=
1

2π

∫ π

0
[f(x+ t) + f(x− t)]

sin
(

m+ 1
2

)

t

sin 1
2
t

dt as
sin

(

m+ 1
2

)

t

sin 1
2
t

is even.
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Since
1

2
+

m
∑

n=1

cosnx =
sin

(

m+ 1
2

)

x

2 sin 1
2
x

,

1

2
π =

∫ π

0

sin
(

m+ 1
2

)

x

2 sin 1
2
x

dx

Therefore
1

2
[f(x+ 0) + f(x− 0)] =

1

2π

∫ π

0
[f(x+ 0) + f(x− 0)]

sin
(

m+ 1
2

)

t

sin 1
2
t

Therefore Sm(x)−
1

2
[f(x+ 0) + f(x− 0)]

=
1

2π

∫ π

0
[f(x+ t)− f(x+ 0)]

sin
(

m+ 1
2

)

t

sin 1
2
t

dt

+
1

2π

∫ π

0
[f(x− t)− f(x− 0)]

sin
(

m+ 1
2

)

t

sin 1
2
t

dt (1)

When f(x+ 0) = f(x− 0) = f(x) (1) becomes

Sm(x)− f(x) =
1

2π

∫ π

0
[f(x+ t) + f(x− t)− 2f(x)]

sin
(

m+ 1
2

)

t

sin 1
2
t

dt (1a)

The integrals appearing in (1) and (1a) are all of the form
∫ b

a
φ(t) sinλtdt where a = 0, b = π, λ = m+ 1

2

φ(t) =
f(x+ t)− f(x+ 0)

sin 1
2
t

,
f(x− t)− f(x− 0)

sin 1
2
t

, or

f(x+ t) + f(x− t)− 2f(x)

sin 1
2
t

Hence if φ(t) is bounded and integrable over [0, π], then by the Riemann

Lebesgue theorem,
∫ π

0
φ(t) sinλt→ 0 as λ→∞.

In fact in the above cases φ(t) is bounded and integrable over [h, π] h > 0
and so the convergence depends only on the behaviour of the function in a
sufficiently small interval [0, h].

Integration of a Fourier Series

If f(x) is bounded and integrable in [−π, π] and F (x) =
∫ π

−π

(

f(t)−
1

2
a0

)

dt

Where 1
2
a0 = f̄ is the constant term in the Fourier series for f , then F (x)

has a Fourier series, convergent everywhere to F (x), obtained by integrating
the Fourier series for f(x)− 1

2
a0 term by term. [This holds even if the Fourier

series for f does not converge.]
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F (x) is an absolutely continuous function and hence possesses a Fourier series
converging everywhere to F (x).

F (x) =
1

2
A0 +

∞
∑

n=1

(An cosnx+Bn sinnx)

Assuming that f is continuous on (−π, π) ensures the existence of F ′(x), and

An =
1

π

∫ π

π
F (x) cosnxdx n = 1, 2, · · ·

=
1

π

[

F (x)
sinnx

n

]π

−π

−
1

n

1

π

∫ π

−π
F ′(x) sinnxdx

= 0−
1

nπ

∫ π

−π

(

f(x)−
1

2
a0

)

sinnxdx [F (π) = F (−π) = 0]

= −
1

nπ

∫ π

−π
f(x) sinnxdx = −

bn

n

Similarly Bn =
an

n

Therefore F (x) =
1

2
A0 +

∞
∑

n=1

−
bn

n
cosnx+

an

n
sinnx

Putting x = π gives
1

2
(a0) =

∞
∑

n=1

bn

n
(−1)n

Therefore F (x) =
∞
∑

n=1

an sinnx+ bn((−1)
n − cosnx)

n

=
∞
∑

n=1

∫ x

−π
{an cosnt+ bn sinnt}dt

Differentiation of a Fourier Series
This is not always valid.

e.g.
∞
∑

n=1

sinnx

n
=

1

2
(π − x) 0 ≤ x ≤ 2π

∞
∑

n=1

d

dx

sinnx

n
=

∞
∑

n=1

cosnx which does not converge.

Sufficient Conditions
If f(x) is continuous and f ′(x) exists except at a finite number of points,
and both f(x) and f ′(x) have Fourier series which converge, then the series
for f ′(x) is obtained by term by term differentiation of the Fourier series for
f(x).

i.e. f(x) =
1

2
a0 +

∞
∑

n=1

an cosnx+ bn sinnx
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⇒
1

2
[f ′(x+ 0) + f ′(x− 0)] =

∞
∑

n=1

nbn cosnx− nan sinnx

[This is really just the same as the result for integration, with slightly weaker
conditions.]

Half-Range Series
Let f(x) be bounded and integrable in [0, π]

(1) Cosine Series

define fc(x) =

{

f(x) 0 ≤ x ≤ π

f(−x) −π ≤ x ≤ 0

Then fc(x) is an even function, which has a Fourier series in which
bn ≡ 0

an =
1

π

∫ π

−π
fc(x) cosnxdx

=
2

π

∫ π

0
fc(x) cosnxdx =

2

π

∫ π

0
f(x) cosnxdx

(2) Sine Series

define fs(x) =

{

f(x) 0 < x < π

−f(−x) −π < x < 0

If f(0) 6= 0 fs is discontinuous at 0.

If f(π) 6= 0 fs is discontinuous at π.

Then fs(x) is an odd function, and has a Fourier series in which an ≡ 0

bn =
1

π

∫ π

−π
fs(x) sinnxdx

=
2

π

∫ π

0
fs(x) sinnxdx =

2

π

∫ π

0
f(x) sinnxdx

Order of magnitude of Fourier coefficients

an − ibn =
1

π

∫ π

−π
f(x)e−inxdx = cn (1)

Suppose f(x) and all its derivatives are bounded and continuous in
(−π, α1), (α1, α2) · · · (αk, π)

Write cmn =
1

π

∫ π

−π
f (m)(x)e−inxdx
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=
1

π

k
∑

0

∫ αr+1

−αr

f (m)(x)e−inxdx (2)

Integrating (1) by parts gives

πcn = πc0n =
k
∑

r=0

[

−
f(x)

in
e−inx

]αr+1

αr

+
1

in

∫ αr+1

αr

f ′(x)einxdx

=
1

in

[

k
∑

r=0

f(αr + 0)e−inαr − f(αr+1 − 0)e−inαr+1 +
∫ αr+1

αr

f ′(x)e−inxdx

]

=
1

in

[

f(−π + 0)e−inπ − f(π − 0)e−inπ

+
k
∑

r=1

{f(αr + 0)− f(αr − 0)}e−inαr + πc(1)n

]

f(−π + 0) = f(π + 0) by periodicity
Therefore f(−π + 0)einπ − f(π − 0)e−inπ

= [f(π + 0)− f(π − 0)]e−inπ = [f(αk+1 + 0)− f(αk+1 − 0)]einαk+1

Hence we have

πc(0)n =
πc(1)n

ni
+

1

ni

k+1
∑

r=1

{f(αr + 0)− f(αr − 0)}e−inαr

Write J (m)
n =

1

π

k+1
∑

r=1

{f (m)(αr + 0)− f (m)(αr − 0)}e−inαr

Therefore c(0)n =
c(1)n

ni
+
J (0)
n

ni

Similarly c(1)n =
c(2)n

ni
+
J (1)
n

ni

Therefore c(0)n =
J (0)
n

ni
+

J (1)
n

(ni)2
+

c(2)n

(ni)2

Since c(2)n =
1

π

∫ π

−π
f ′′(x)e−inxdx is bounded,

if J (0)
n = 0 for all n ≥ m then cn = c(0)n is O

(

1
n2

)

as n→∞

If also J (1)
n = 0 for all n ≥ m then cn = c(0)n is O

(

1
n3

)

as n→∞

In particular if f, f (1), · · · f (r) are continuous but f (r+1) is not continuous then
cn = O

(

1
nr+2

)

as n→∞

In fact J (0)
n vanishes only if f is continuous for if we write

f(αr + 0)− f(αr − 0) = jr then πJ (0)
n =

k+1
∑

r=1

jre
−inαr .

If J (0)
n = 0 for n ≥ m then
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k+1
∑

r=1

jre
−inαr = 0 n = m,m+ 1, · · ·

Taking n = m,m+ 1, · · · ,m+ k, we write e−iαr = zr

Therefore









zm1 zm2 · · · zmk+1
...

zm+k
1 zm+k

2 · · · zm+k
k+1

















j1
...

jk+1









= 0

The determinant of the matrix is

(z1z2 · · · zk+1)
m

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 · · · 1
z1 · · · zk+1
...
zk1 · · · zkk+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (z1z2 · · · zk+1)
m
∏

r>s

(zr − zs)

zr − zs 6= 0 for r 6= s

Therefore the determinant is non zero.
Therefore j1 = j2 = · · · = jk+1 = 0
Therefore f is continuous.

Parseval’s Theorem
If f(x) is bounded and integrable in (−π, π)

then
1

π

∫ π

−π
(f(x))2dx =

1

2
a2

0 +
∞
∑

n=1

(a2
n + b2n).

[Note that this is true even though f(x) does not equal the sum of its Fourier
series.]
If we assume that f(x) is continuous and the Fourier series converges to f(x),
1

n

∫ π

−π
f 2(x) =

1

π

∫ π

−π
f(x)

[

1

2
a0 +

∞
∑

n=1

(an cosnx+ bn sinnx)

]

dx

Since uniformity of convergence is not affected by multiplying by f(x) we
can integrate term by term

RHS=
1

2
a0

1

π

∫ π

−π
f(x)dx+

1

π

∞
∑

n=1

an

∫ π

−π
f(x) cosnxdx+ bn

∫ π

−π
f(x) sinnxdx

=
1

2
a2

0 +
∞
∑

n=1

a2
n + b2n
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