Fourier Series and their Applications

The functions 1, cos z, sin x, cos 2z, sin 2z, - - - are orthogonal over (—m, ).
. 0 m#n

/ cosmxcosnrdr=<{ ®™ m=n#0
—T

2r m=n=20

™
/ cosmzx sinnzdx = 0 for all m,n

—T

/ sin max sin nxdr = 0 m7n
— ™ m=n#0
In fact the functions satisfy these relations over any interval (o, a + 2m).

Assuming that f(z), defined and integrable in (—, ), has an expansion.

1 (o]

500 + Z (ay, cosmzx + by, sinnx)
n=1

uniformly convergent over (—, )

/7r f(z)dz = may

—Tr
™

™ 1 .
/ f(z) cosnzxdx = ma,, therefore a,, + ib, = —/ flz)e™ dx
—7 ™ J—m
f(z)sinnxdx = 7b,
These coefficients exist irrespective of whether or not the series converges
and is equal to f(z), and they are called the Fourier coefficients.

Sufficient Conditions for convergence

f(@) = f(§)
r—£
xe(§ — h, &+ h)) then the fourier series converges at £ to f(€).

a) If f(x) is differentiable at & (or if Im, such that < m,

b) If f(z) is monotonic in § <z < £+ h and in £ — h < z < £ for some
h > 0, then the fourier series converges at ¢ to the value

s{f(E=0)+ f(E+0)}



General Range
x (o 52)
(*2*)

The range a < z < b is standardised by substituting X =

then — 7 < X < 7.
1 o
The series §a0 + Z a, cosnX + b, sinnX

n=1
1 S 22 — (a+D 22 — (a+b
becomes §a0 4 Z a,, cos 2nm (%) + b, sin 2nm (%)
n=1 - —a

Periodicity of f(z)

We suppose that f(x) is represented by the series (when cgt.) for all z,
hence since the sum function of the series is periodic, with period 2w, we
have f(z + 2m) = f(z) which defines f(z) outside the original range.

Fourier Series for  —¢ (0 <t <1)

First consider the identity

m . e(erl)im -1 e(m-i-%)iﬂ? o 67%i$
1 + Zemsc — : — —

=1 ew —1 2isin g

cos (m+ %) T + 1sin (m+ %) T — (COS%I’ —isin%x)
24 sin %:c
Hence for x real (z # 0,£27, - - ) taking real and imaginary parts:
m 1 1sin(m+1i)z
Re : 1+Zcosnx:2+<2>

= 2 sin%:z:
1 m 1 sin (m+%):p
- S N VAN 1
or 5 —|—nzzzlcosm: 5 sin%x ( )
1 1 moo 1 cos (m+%)x
ITTL: —§C0t§x+;SIHRI:—§W (2)

Integrate (1) and (2) from = to 7

1 " osinnx 1 wsin<m+%>t
) ~(r—a) — :7/ A2
(1) 2(7T 2 nz::l 2 Jz sin%t

(2): [— log (sin %t)]u lfj _Cosmr _ _Lpen(miy)t, (4)

dt (3)

—_ —3
n—1 n 2 Je Slnit

Now suppose § < x < 27 — 4.



Then using the Riemann Lebesgue theorem, we have, letting m — oo in (3)

and (4)
1 > sinnx
() — 5
S =) nzl : )
1 [ee] n o0
log sin §$ — Z Z cosSnT _
n=1 =

cosnx

1
Therefore log 2 sin 3T =" Z

n=1

Alternative Proof of (5) and (6)

€ dt
log(1 — &) :—/0 T3
where we take a cut along the positive real axis in the ¢-plane from 1 to oco.

The branch of log(1 — &) chosen is that which is real when ¢ is real, and is

one-valued in the cut plane. In particular this vanishes at £ =0
1 tm
Sa— L T

n

1—1 1—t

5 n
therefore /0 — = ;i /0 Edt
where the path is taken along the radius 0 — €.
DIAGRAM

For all ¢ on the radius through &
1 —t| > |sinf| Re(§) >0
> 1 otherwise
Hence in all cases |1 —t| >sind when 6 <argé <2r -3 (0<d <)

& ¢m r i0\m .10
Therefore A Hdt‘ == /0 <p€11t€dp
roph 1 pmtl 1
< ———dp = < 0<r<i1
_/ | sin ¢ b sindm+1 = (m+1)sind ==
. £ 1" dt
Hence lim / 1= =0 0 <argé <2m—9
m—0o0 0 —_
0<r<i1

When r =1 the convergence is uniform with respect to #. Hence we have

log(1 —¢) Z—

Where the serles Converges on [£| =1 except at £ = 1, uniformly in
0 <argé <2m—90



log(1 —¢) = log |1 —¢| +darg(l —§)

1 T 0
=1 2sin=0) —i|=-— =
og( 311129) z<2 2)

Taking real and imaginary parts gives

lﬂ_ezzsmnﬁ

2 T~ on
1 >, cosnb
10g<251n29>:—2 0<0<2m
L
Convergence being uniform in § <6 < 27 — 9.

Fourier Expansion of the Bernoulli polynomials in 0 <t < 1. Values of the
Bernoulli numbers.

1 >, si
Put x =27t in —(7 —x) = Zsmm:
2 T~ on

1 & sin 2nt

1
Therefore t — = = —= >
ererore 9 .

n

(1) 0<t<1

B i sin 27nt
1 2m™n

sin 2mnt

Therefore P (t) = —2 Z 9

PAlt) = Py > Py(0) =0

Therefore Ps(t) = / Pi(s)ds

The series (1) Convé)rges uniformly in e <t <1 —¢

t it gin 2
/Pl(s)d3:—22/ Mds e<t<l—ce

9 Z COS 2nme — Cos 2n7rt

(2nm)?
The serles on the right converges absolutely and uniformly since
cos(2nmt) 1

(2nm)? | — (2nm)?
— cos 2nt

t
Hence [ Pi(s)ds = 22 0<t<1
0

2n7r

1
and Z — converges.

(using continuity)
cos 2nmt

HeHCGP2<) PQ 2
> o



_ 0 1 —2
h=-23 (2nm)2 (2@252

1 —
Next P’(t) = Pg(t) P2

sin 2nmt
Theref Ps(t) =2
erefore P3( 21: o)’

and generally we have

_ > cos 2nmt
Po(t) = Popp = (—1)™ 12
2 (> 2 Z 2n7r (99 ) 2m
© sm2n7rt
Pyia(t) = (=1)™ 12 —_—
2 +1( ) ( ) mzz:l (2n7r)2m+1
5 2S2m
By, =(-1)™
2 (=1) (27)2m
We ztilso have
gbm—()zpm(t) m:2,3’...
m)!
B _
T = (=1)"P,,
(2m)! (=0"F

For k> 2 it Can be shown that
1<S,g<1+2 5(S2 — 1)
Therefore Sy, = 1+ o(k)

2
Also P2m+1(t> ~ <—1)7n_1(277_)ﬁ+1 sin 27t

Py (t) ~ (=1)™ 1 1 — cos 27t)

.
(2m)™
Fourier Series of the Square Wave

1 >, sinnz
We have 5(71’—I) => -

. n=1
Writey =2 — 71

o0

1 sin ny
Ty = § : 1)y
2 (=1) n

n=1

_9 Z(—l)nfl s nx
n=1

Write f(x) =2 i(—l)

1 SinNT
n

O<x<2m

—rT<<y<m

—nrm<r<T



Graph of f(z) is shown by solid lines.

Graph of f(z + m) is shown by broken lines.
Graph of f(z) — f(z + m) is shown by dotted lines.
The fourier series of f(x) — f(z + m) is then

> ,sinnz > e ,Sinnx
23 (1S g Yy (-
n=1 n=1

s sin(2n + 1)z

:42

= 2n+1
4 & sin(2n+ 1)z +1 O<z<mw
7rnz_0 nm+1 | -1 —m<x<0
Find coefficients by direct integration.

Gibbs’ Phenomznon @ )
T osin(2n + 1)z

Write S, == _

tite Sm(z) = - > om + 1

n=0

T d i sin(2m + 2)x
T2 ()= o+ 1)g = SR T 2T
4de (x) ngocos( n+1)x 5
T (2m+ 1w

Is vanishesino< x < m at x om + 2 oIm + 92

Spm(x) is symmetrical about 7.
Hence consider the value of S, for 0 <z < 7, and in particular at

the first max.

B T

C 2m 42’
ZSm ( s ) _ /ﬁ Sin(Qm + 2)tdt
4 2m +82 0 2sint
Putt = then we have

2m +



T s 1 sin sds 1 (™ sins S
—sm( )——/ _ :—/ qb( >ds
4 2m + 2 2Jo 2m+2)sing s 2Jo s 2m + 2

where ¢(u) = By

sinu
N 1< < <u< < < 72 2
ow 1 <o(u) <p(d) 0<u<i<m and0_2m+2_7rm—l—

SOl_S(b(z +2)<¢(2m—|—2>

128m8>0 mo<s<mr
S
sin s T sin s S
Henee |75 % < [T (0 )a
enceo s 5 0 s¢2m+2 N
T Sin S
d
¢(2m+2)/ S §
Since lim ¢ T = 1 we have
m—00 2m +
lim T 8in s ( )ds:/ﬁ smsds
m—00 5 0 S
Hence th (7) —/ wds 1.179 > 1
2m + 2 mJo s

Dirichlet’s Formula (sufficient conditions for convergence)
Assume that f(x) is bounded and integrable over [—m, 7|, and

fa+om)=f@)

1
Write Sy, (x) = 500 + Y (an cosnz + by, sinnx)

n=1

/ f(t) [ i (cosnt cos nx + sinnt sin nx)] dt
[ i cosn(t —x ] dt

1 = sm(_—f— )(t—x)
T om / /) sin 5 (t — ) dt

— i/w_m f(x—I—s)—sm <m—1i_ ;)Sds

217 J—ne sin 38
1 m sin (m + %) s

= / flex+s)——F——ds by periodicity
2w Jx sin 5§

sin (m—f— %)t

1
sin 225

sin (m—|— %)t

— 1S even.
sin 525

= o [+ 0+ f - 1) e



Since % + nz::lcosn:v = %,
1 m sin (m + %) T
éﬂ - /o 2sin %x d
Therefore - [f(x+0) + f(z —0)] = %/0 [fz+0)+ f(z— 0)]%
Therefore S, (z) — ;[f(x +0)+ f(z —0)]
i i + 1)t
o [+ 4(%0)}%0&
2
1 fn sin (m + %) t
+g/0 [f(x—t)—f(x—o)]sm—%tdt (1)
When f(z+0) = f(x —0) = f(z) (1) becomes
1 gr sin (m + %) t
Sl@) = (@) = 5= [Ufle+1) + flo =) = 2f () ——=dt  (1a)

2
The integrals appearing in (1) and (1a) are all of the form

b
/ 6(t) sin Mdt where a =0, b=, A=m+ 1

o(t) = f(m—i—tii;l];(x—k())’ f(:z:—tiir:lj;(x—0)7 or
2 2
fle+t)+ flz—t) = 2f(z)
sin%t

Hence if ¢(t) is bounded and integrable over [0, 7], then by the Riemann
Lebesgue theorem, / o(t)sin A\t — 0 as A — oo.
0

In fact in the above cases ¢(t) is bounded and integrable over [h, 7] h > 0
and so the convergence depends only on the behaviour of the function in a
sufficiently small interval [0, h].

Integration of a Fourier Series

i 1
If f(z) is bounded and integrable in [—7, 7] and F(z) = / (f(t) - §ao> dt

Where ag = f is the constant term in the Fourier series for f, then F(z)
has a Fourier series, convergent everywhere to F'(x), obtained by integrating
the Fourier series for f(z)— 3ao term by term. [This holds even if the Fourier
series for f does not converge.]



F(z) is an absolutely continuous function and hence possesses a Fourier series
converglng everywhere to F(x).

F(x ):—Ao—i—z (A, cosnz + B, sinnr)

Assuming that f is continuous on (—, 7) ensures the existence of F'(z), and
1 s

An:_/ F(x) cos nxdx n=12,--
0

F(z)

1/7; (f(x)—;ao> sin nadx [F(m) = F(—m) = 0]

1oy by,
=—— f(x)sinnxdx:——
nm a n

11 4=
smnx] ———/ F'(z) sin nxdx

nmJ-

1
s
0—

Similarly B,

by,
Therefore F(x) = —AO + Z ——cosnx + — sinnx
n

n=1
1 oo
Putting z = 7 gives é(ao) =>

o0

3 an sinnz + b, ((—1)" — cosnx)

Therefore F'(x) =

n=1

=> / {a, cosnt + b, sinnt }dt
n=17""7T

Differentiation of a Fourier Series
This is not always valid.

sinnr 1
egZ — =(r—) 0<x<2r
> d sin nx
— = Z cos nx which does not converge.
—dxr n

Sufficient Conditions

If f(z) is continuous and f'(x) exists except at a finite number of points,
and both f(z) and f’(x) have Fourier series which converge, then the series
for f'(x) is obtained by term by term differentiation of the Fourier series for

f ().

1 o
ie. f(x)= 500 + Z @y, cOSNT + by, sinnx
n=1



[e.9]

1
= §[f,($ +0) + f'(x — 0)] = Y _ nb, cos nx — na, sinnx

n=1

[This is really just the same as the result for integration, with slightly weaker
conditions. |

Half-Range Series
Let f(z) be bounded and integrable in [0, 7]

(1)

Cosine Series

O A

Then f.(z) is an even function, which has a Fourier series in which
b, =0

1 ™
an = —/ fe(z) cos nxdx

mwJ—7
2 2 [
— %/0 fe(x) cosnxdr = ;/0 f(z) cos nzdx
Sine Series
€T O<z <
define fy(z) = { Ji(f()_g;) —T <z <7(;

If f(0)#0 f, is discontinuous at 0.
If f(m)#0 f,is discontinuous at .

Then fs(x) is an odd function, and has a Fourier series in which a,, =0

1 T
b, = —/ fs(z) sinnxdx
™ J—7
2 T . 2 s )
= —/ [s(x)sinnxdr = —/ f(z)sinnxdx
m.Jo wJo
Order of magnitude of Fourier coefficients
1 /= .
a, — ib, = —/ flz)e ™ dx = ¢, (1)
T

Suppose f(x) and all its derivatives are bounded and continuous in
(_71-7 Oél), (Oél, Oéz) e (Oék, ﬂ-)

1 /= |
Write ¢ = = [ f0(z)e" " dx
™ J—7
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Z / T () e gy 2)

Integratmg ( ) by parts gives

Gr+1 1 Qpg1 .
Z [ —mz‘| + 7/ + f/(I)emde

—0 o m Joy
k i Q41 , .
— Z f( 7'mon“ o f(arJrl o O)efmaﬂ_l i f (l’)@imzdl'
r=0 Qr

1
in
in [f( T4 0)e " — f(m — 0)e ™"

k

+ Z{f ay +0) = flay —0) e ™ + w&”]
f(=m+ 0) f( + 0) by periodicity

Therefore f(—m + 0)e™™ — f(m — 0)e~ "™

= [f(m+0) = f(m = 0)]e™ = [f(ahr1+0) — f(or41 — 0)]em @+
Hence we have

o meD K ‘
me) = i+ g e £ 0) = flar — 0))eT
k+1 '
Write Jflm = Z{f N +0) — f0(a, — 0)}e e
oo
Therefore (¥ = CL + =
@ g0
Similarly 07(11) = CL 4+ 2
Mo Mo @
Therefore ¢ = I I n
" ni  (ni)?2  (ni)?
1 g |
Since ¥ = —/ f"(x)e”"™*dx is bounded,
T J—m

ifJ( —Oforalln>mthencn—c 150(2)asn—>oo
IfalsoJ(I)—0f0ralln>mthencn—c 180(3)asn—>oo

In partlcular if £, ... £ are continuous but £+ is not continuous then
=0 nT+2 as n — 0o

In fact J(¥ vanishes only if f is continuous for if we write
k+1

flay +0) — fla, — 0) = j, then 7J» =3 jemimor,

If J» =0 for n > m then

11



k+1

ZjTeimlaT:O n:m7m+17”'
Taking n =m,m+1,---,m + k, we write e " = z,
m m m N
21 ) 241 J1
Therefore : : =0
m-+k m—+k m—+k .
21 29 Rkt Jk+1
The determinant of the matrix is
1 ... 1
21 e Zk+1
(2120 2ep)™ | . = (2122 2pg1)" H(Zr — 2)
: r>s
k k
Zl . e Zk+1

zr — 25 # 0 for r # s

Therefore the determinant is non zero.
Therefore j; = jo =+ = jra1 =0
Therefore f is continuous.

Parseval’s Theorem
If f(z) is bounded and integrable in (—m, )
1 = 1 >
then 7/ (f(z))*dz = 5&3 + > (ah +02).
T J—7 n—1
[Note that this is true even though f(x) does not equal the sum of its Fourier
series. |
If we assume that f(z)is Contmuous and the Fourier series converges to f(z),

ﬁ/_ﬁ () / fla [—ao + Z (a, cosnx + by, smnx)] dx

n=1
Since uniformity of convergence is not affected by multiplying by f(z) we

can integrate term by term

RHS——aO— / x)dr + — Z an, / ) cos nzdz + by, / ) sin nxdx

1
:§a§+2an+bi

n=1
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