
Computer Applications – Python Exercise Sheet 1 
All exercises adapted from MIT OpenCourseware under the Creative Commons Attribution-

NonCommercial-ShareAlike 3.0 United States license. 

 

Instructions 
You can answer 1.2, 1.3 and 1.4 on paper: a printed version of this, or in your notebook, or in 

your logbook. If you prefer, you can do this digitally. 

 

You must answer 1.1 in a text file named homework1.py. 

 

In both cases you must ensure you save it somewhere you can retrieve it, and bring it to every 

lab. 

Exercise 1.1 - Equations 
 

In this section you will write some code in a Python file. This is a text file; when you save it, 

name it homework1.py. You can edit these in IDLE. 

 

Part I: Input the following sets of equations, and note the difference between int arithmetic and 

float arithmetic. You can do this just in your interpreter (you don’t need to turn anything in for 

this part), but pay attention to the output! 

1. 
5

2
, 

5

2.0
, and 

5.0

2
 Note that as long as one argument is a float, all of your math will be 

floating point! 

2. 7 ⋆ (
1

2
) and 7 ⋆ (

1

2.0
) 

3. 5 ⋆⋆ 2, 5.0 ⋆⋆  2, and 5 ⋆⋆ 2.0 

4. 
1

3.0
Note the final digit is rounded. Python does this for non-terminating decimal numbers, 

as computers 3.0 cannot store infinite numbers! 

 

Part II: In homework1.py, transcribe the following equations into Python (without simplifying!), 

preserving order of operation with parenthesis as needed. Save each as the value of a variable, 

and then print the variable. 

1. 
3×5

2+3
 

2. √7 + 9 × 2 (Not been taught how to square root in Python? Search for the answer on 

Google!) 

3. (4 − 7)3 

4. √−19 + 100
4

 

5. 6 𝑚𝑜𝑑 4 - If you aren’t familiar with modular arithmetic, it is pretty straightforward - the 

modulus operator, in the expression x mod y, gives the remainder when x is divided by 

y. Try a couple modular expressions until you get the hang of it.  

http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode
http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode


 

Part III: In homework1.py, use order of operation mathematics to create two equations that look 

the same (ie, have the same numbers) but evaluate to different values (due to 

parenthesization). Save each as the value of a variable, then print the variables.  

 

Exercise 1.2 – Natural Language Processing 
Consider the following sentence: 

Alice saw the boy on the hill with the telescope. 

1. Draw a sketch of what’s described in this sentence.  

 

 

 

 

 

 

2. Draw a different sketch that could also be described by this sentence.  

 

 

 

 

 

 

3. Write the sentence in two different ways, that clarifies the meaning of each of your 

sketches, next to your above sketches (hint: rewrite the sentence using extra words, 

commas, etc).  

4. The ambiguity illustrated by this sentence is known as “prepositional phrase 

attachment.” Think about this as you continue to learn how to program, and consider 

how programming languages are designed to avoid the ambiguity illustrated by this 

example!  

 

Exercise 1.3 – Variable Names 

The Python interpreter has strict rules for variable names. Which of the following are legal 

Python names? If the name is not legal, state the reason.  

1. and 

 

 

2. _and 

 

 

3. var 

 

 



4. var1 

 

 

5. 1var 

 

 

6. my-name 

 

 

7. your_name 

 

 

8. COLOR 

 

 

 

Exercise 1.4 – Types 
 

It is important that we know the type of the values stored in a variable so that we can use the 

correct operators (as we have already seen!). Python automatically infers the type from the 

value you assign to the variable. Write down the type of the values stored in each of the 

variables below. Pay special attention to punctuation: values are not always the type they seem! 

1. a = False  

2. b = 3.7  

3. c = ’Alex’  

4. d = 7  

5. e = ’True’  

6. f = 17  

7. g = ’17’  

8. h = True  

9. i = ’3.14159’  

 

To verify your answers, you can use the interactive Python shell, but first try to do the exercise 

without help.  

 

>>> x = 100  

>>> type(x)  

<type ’int’>  

>>> 

 



Sources 
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-189-a-gentle-

introduction-to-programming-using-python-january-iap-

2011/assignments/MIT6_189IAP11_hw1.pdf 

 

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-189-a-gentle-

introduction-to-programming-using-python-january-iap-

2011/assignments/MIT6_189IAP11_hw1_written.pdf 

 

http://mechanicalmooc.wordpress.com/ 

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-189-a-gentle-introduction-to-programming-using-python-january-iap-2011/assignments/MIT6_189IAP11_hw1.pdf
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-189-a-gentle-introduction-to-programming-using-python-january-iap-2011/assignments/MIT6_189IAP11_hw1.pdf
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-189-a-gentle-introduction-to-programming-using-python-january-iap-2011/assignments/MIT6_189IAP11_hw1.pdf
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-189-a-gentle-introduction-to-programming-using-python-january-iap-2011/assignments/MIT6_189IAP11_hw1_written.pdf
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-189-a-gentle-introduction-to-programming-using-python-january-iap-2011/assignments/MIT6_189IAP11_hw1_written.pdf
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-189-a-gentle-introduction-to-programming-using-python-january-iap-2011/assignments/MIT6_189IAP11_hw1_written.pdf
http://mechanicalmooc.wordpress.com/

	Computer Applications – Python Exercise Sheet 1
	Instructions
	Exercise 1.1 - Equations
	Exercise 1.2 – Natural Language Processing
	Exercise 1.3 – Variable Names
	Exercise 1.4 – Types
	Sources


