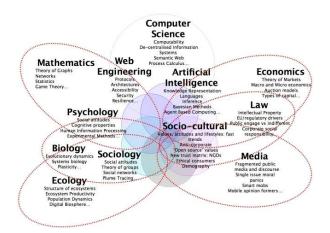
An Economist's view of Web Science

Robin Mason

23 February 2009


What is Web Science?

- Multidisciplinary exercise to
 - understand what the Web is
 - engineer its future
 - ensure its social benefit

What is Web Science?

- Multidisciplinary exercise to
 - understand what the Web is
 - engineer its future
 - ensure its social benefit
- Computer Science, Economics, Law, Management, Maths, Sociology . . .

Someone else's picture

• Individuals respond to incentives

- Individuals respond to incentives
- Individual behaviour is rational

- Individuals respond to incentives
- Individual behaviour is rational
- Prices are useful to allocate scarce resources

- Individuals respond to incentives
- Individual behaviour is rational
- Prices are useful to allocate scarce resources
- Competitive markets are efficient (but not fair)

- Individuals respond to incentives
- Individual behaviour is rational
- Prices are useful to allocate scarce resources
- Competitive markets are efficient (but not fair)
- Quantitative framework for positive and normative analysis

Economics or computer science?

- Information and search
- Peer production and social computing
- Online markets: e-bay v. Yahoo; Google's click auction, ...
- Platforms and two-sided markets
- Incentives in distributed systems

Example: economics and networks

Some characteristics of networks

	WWW	Citations	Co-author	Ham	Prison	High School
				Radio		Romance
Number of Nodes	325,729	396	81,217	44	67	572
Randomness	0.5	0.62	3.5	5.0	590	1000
Avg. Degree	4.5	5	1.7	3.5	2.7	0.84
Avg. Clustering	0.11	0.07	0.16	0.06	0.001	0

Table: Characteristics of different social networks

How an economist would think about this

- An individual gets a benefit of b from each direct link
- Gets a benefit of b^2 from each 'friend of a friend'
- Forming links is costly $c \ge 0$
- 5 individuals who are considering whether to form links

How an economist would think about this

- An individual gets a benefit of b from each direct link
- Gets a benefit of b^2 from each 'friend of a friend'
- Forming links is costly $c \ge 0$
- 5 individuals who are considering whether to form links
- What networks are efficient?
- What networks will form?

How an economist would think about this

- An individual gets a benefit of b from each direct link
- Gets a benefit of b^2 from each 'friend of a friend'
- Forming links is costly $c \ge 0$
- 5 individuals who are considering whether to form links
- What networks are efficient?
- What networks will form?
- Depends on b and c

Efficiency

• c very low: "complete" network

• c moderate: star

• c very large: empty network

Equilibrium

• c very low: "complete" network

• c moderate: all sorts of things

• c very large: empty network

Equilibrium

- c very low: "complete" network
- c moderate: all sorts of things
- c very large: empty network
- Inefficiency arises because of "free riding"
 - I prefer someone else to incur link cost
 - but everyone thinks like that
 - too few links created

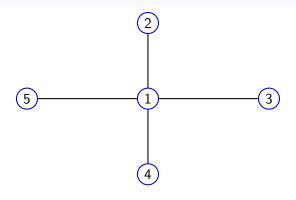


Figure: The star network

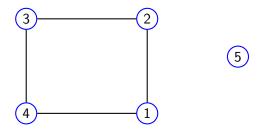


Figure: An equilibrium network with moderate costs

- Economic models can explain 3 key features
 - small worlds
 - highly clustered
 - fat tails

- Economic models can explain 3 key features
 - small worlds
 - highly clustered
 - fat tails
- Implication 1: small number of individuals provides majority of benefits

- Economic models can explain 3 key features
 - small worlds
 - highly clustered
 - fat tails
- Implication 1: small number of individuals provides majority of benefits
- Implication 2: self-forming networks are inefficient

- Economic models can explain 3 key features
 - small worlds
 - highly clustered
 - fat tails
- Implication 1: small number of individuals provides majority of benefits
- Implication 2: self-forming networks are inefficient
- Implication 3: tendency for concentration

- Economic models can explain 3 key features
 - small worlds
 - highly clustered
 - fat tails
- Implication 1: small number of individuals provides majority of benefits
- Implication 2: self-forming networks are inefficient
- Implication 3: tendency for concentration
- Implication 4: potential reasons for public policy

Some open questions

- How to measure and model the dynamics of networks?
- How to measure the value of user-generated content?
- Using online data to test models of network formation
- Role for policy in online networks
 - connectivity
 - ownership of data
 - subsidization