
ELEC6021 Research Methods

Communications Assignment I

Submission Details

This assignment forms your assessment for the “Communications 1” part of ELEC6021 Research
Methods and contributes 25% of your mark for that course. Since this assignment is worth five
credits, it should take you up to 50 hours to complete it. Please do not spend any more time
than this since I’m sure you have better things to be doing!

You are required to work entirely on your own and produce a write-up, which only needs
to include the figures, calculations and comments that are directly requested in the bold
paragraphs below. Each figure in your write-up should have well labelled axes and a relevant
title or legend that identifies which signals are shown.

When you are finished, you need to submit your write-up electronically at C-BASS
https://handin.ecs.soton.ac.uk/handin/0910/ELEC6021/2/

before 4pm on Thursday 12/11/2009. You also need to print out your write-up, staple or bind
it together with your C-BASS receipt and submit it at the ECS reception before the same
deadline.

If you notice any mistakes in this document or have any queries about it, please email me at
rm@ecs.soton.ac.uk

Have fun, Rob Maunder.

1 Analogue Modulation

1.1 Double SideBand Suppressed Carrier Modulation

When a Radio Frequency (RF) signal is placed onto the antenna of a transmitter, it will
propagate through the air and can be detected on the antenna of a receiver. The higher the
frequency of this signal, the smaller the antennas that are required. However, we are often
interested in communicating relatively low frequency signals, such as audio. Hence, we must
modulate our low frequency signal onto a high frequency carrier, in order to transmit it.
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Figure 1 shows the schematic of a transmission scheme that uses Double SideBand Suppressed
Carrier (DSBSC) modulation to transmit an input signal x(t) and demodulation to obtain a
received signal x̂(t).
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Figure 1: DSBSC modulation and demodulation.

As shown in Figure 1

y(t) = x(t) cos(2πfct), (1)

u(t) = 2x(t) cos(2πfct) cos(2πfct). (2)

Using the trigonometric identity 2 cos(θ) cos(θ) = 1 + cos(2θ), we get

u(t) = x(t) (1 + cos(4πfct)) , (3)

= x(t) + x(t) cos(4πfct). (4)

a) Input Signal. For our input signal x(t), we shall employ a normally distributed random
signal that has been bandlimited to a maximum frequency of fmax = 10 kHz. Let’s start by
generating a normally distributed random signal xw(t) and worry about bandlimiting it later.
We’ll simulate the analogue signal xw(t) over an interval of T = 0.1 s, using a high sampling
rate of fs = 2 MHz. Thus, the first step is to put the commands

f s=2000000;

T=0.1;

samples=f s*T;

t=(0:(samples-1))/f s;

into a new Matlab .m file. You should use this .m file throughout Section 1.1. This way, you’ll
be able to modify it when you get to Section 1.2, making things much easier for you.

You can generate a random analogue signal xw(t) by putting the commands
randn(’seed’,1);

x w=randn(size(t));

into your .m file. Here, we have seeded the random number generator, which will ensure that
you’ll get the same sequence of random numbers every time you run your .m file. This will
make it easier for you to keep your results self-consistent in your write-up (and make it easier
for me to mark it!)

Note that you can look up any unfamiliar Matlab commands and their parameters using Mat-
lab’s help facility. For example, in Matlab’s command window type

help randn

to obtain information on how to create a Gaussian distributed random variable.
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You can plot the first 1000 samples of the signal xw(t) by putting the commands
figure;

plot(t(1:1000),x w(1:1000));

into your .m file and running it. Use the ‘insert’ menu in the resultant figure to add relevant
labels to the x and y axes of this plot, as well as a relevant title. You should do this for all of
the plots generated in this assignment.

The signal xw(t) is said to be white. This means that it contains components at all frequencies.
You may check this by using the pwelch Matlab function, which displays the signal’s Power

Spectral Density (PSD). Simply put the commands
figure;

pwelch(x w);

into your .m file and run it. Again, use the ‘insert’ menu in the resultant figure to change the
title so that it indicates which signal the PSD relates to. You should do this for all of the PSDs
generated in this assignment.

However, we require a signal that does not contain any components above a frequency of
fmax = 10 kHz. We can eliminate these components from xw(t) using a Low-Pass Filter (LPF).
Matlab’s fir1 function can be used to design an LPF. Take a look at the help that Matlab
offers for this function using the command

help fir1

This tells us that the command
B=fir1(N,W n);

designs an Nth order LPF and returns the N + 1 filter coefficients in a vector B. The normalised
cut-off frequency W n must be in the range 0 < W n < 1, with 1 corresponding to half the sample
rate fs. A filter order of N = 1023 is a good choice, but it’s up to you to work out what value
to use for W n, with consideration of fmax and fs.

The signal xw(t) can be filtered to obtain x(t) using the command
x=filter2(B,x w);

Plot the first 1000 samples of the signal x(t) and generate its PSD using the plot and pwelch

functions, as before. Observe that the high frequency components of x(t) have been attenuated
by about 90 dB compared to the low frequency components. In other words, the PSD of the
low frequency components is 1090/10 = 1000000000 times higher than that of the high frequency
components! Our LPF has done such a good job because its order N = 1023 is so high.

Export the plots and PSDs of the signals xw(t) and x(t) as .jpg images and in-
clude these in your write-up. Comment on the differences between the two signals
and between the two PSDs. Also, explain the calculation you used to choose the
normalised cut-off frequency W n for the LPF.

b) Modulation. Create a carrier c(t) with frequency fc = 250 kHz using the commands
f c=250000;

c=cos(2*pi*f c*t);

Plot the first 1000 samples of this carrier c(t) using the plot function, as before. You may like
to use the zoom button in the resultant figure to take a closer look at the carrier wave. Also,
generate the PSD of c(t) using the pwelch function, as before.

Next, we need to multiply the carrier c(t) with the input signal x(t) in order to obtain the
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DSBSC signal y(t), as shown in Figure 1. You can do this using the command
y=c.*x;

Note that we must use the element-wise multiplication (.*) rather than the vector multiplication
(*) of c and x. Again, plot the first 1000 samples of this DSBSC signal y(t) and generate its
PSD using the plot and pwelch functions, as before.

Include the new plots and PSDs in your write-up. Comment on how the plots of
x(t) and c(t) may be combined to obtain that of y(t). Similarly, comment on how
the PSD of y(t) may be obtained by combining those of x(t) and c(t). What is the
bandwidth of y(t) in Hertz? How does this compare to the maximum frequency in
x(t), namely fmax?

c) Demodulation. Take a look at the demodulator in Figure 1. Notice that it doesn’t use
any components that we haven’t already considered. Demodulation should be no problem for
a student of your talents!

Start by transforming y(t) into u(t). You can use similar Matlab code to that which transformed
x(t) into y(t), but don’t forget to multiply by two, as shown in Figure 1. Plot the first 1000
samples of the signal u(t) and generate its PSD using the plot and pwelch functions, as before.
Note that an image signal has arisen in the PSD.

This image signal can be removed using the LPF shown in Figure 1. With consideration of the
PSD of u(t), choose a normalised cut-off frequency W n for this LPF that is half-way between
the desired signal and the image signal. A filter order of N = 23 will be sufficient for this LPF;
there is no need to attenuate the image signal by as much as a thousand million times in this
case! Obtain the reconstructed signal x̂(t) and compare its first 1000 samples to those of x(t)
using the commands

figure;

plot(t(1:1000),xhat(1:1000),’-’, t(1:1000),x(1:1000),’--’);

Here, the parameter ’-’ tells Matlab to plot x̂(t) using a solid line, while the parameter ’--’
results in a dashed line for x(t). Make sure you are happy that x̂(t) and x(t) are very similar.
Also, generate the PSD of x̂(t) using the pwelch function, as before.

Include the new plots and PSDs in your write-up. Comment on how the plots of
u(t) and x̂(t) compare to those of x(t) and y(t). Similarly, comment on how the PSDs
of u(t) and x̂(t) compare to those of x(t) and y(t). Also, comment on how the PSD
of u(t) relates to the equations provided below Figure 1. Explain the calculation
you used to choose the normalised cut-off frequency W n for the LPF.

1.2 Quadrature Amplitude Modulation

So far, we have only considered the use of a cosine carrier wave. If we had used a sine carrier
wave in Section 1.1, we would have obtained very similar results. This is because the sine and
cosine functions differ only by a phase shift of π/2 radians, ie cos(θ) = sin(θ + π/2). As a
result, sin(θ) = 0 if cos(θ) = ±1 and cos(θ) = 0 if sin(θ) = ±1. These results indicate that
the cosine and sine functions are orthogonal to each other. This means that a signal xi(t)
that is amplitude modulated onto a cosine carrier wave will not interfere with another signal
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xq(t) that is modulated onto a sine carrier wave having the same frequency fc. In this way,
we can transmit two signals at once, which is useful for stereo audio for example. We refer to
these signals as the in-phase signal xi(t) and the quadrature-phase signal xq(t). The additional
presence of the quadrature-phase signal gives Quadrature Amplitude Modulation (QAM) its
name. A schematic for a QAM scheme is shown in Figure 2

y(t)

Demodulator

2 sin(2πfct)

uq(t) x̂q(t)
LPF

×

2 cos(2πfct)

ui(t)
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x̂i(t)

×

+

Modulator

×

cos(2πfct)

xi(t)

sin(2πfct)

×xq(t)

Figure 2: QAM modulation and demodulation.

As shown in Figure 2

y(t) = xi(t) cos(2πfct) + xq(t) sin(2πfct), (5)

ui(t) = 2xi(t) cos(2πfct) cos(2πfct) + 2xq(t) sin(2πfct) cos(2πfct), (6)

uq(t) = 2xq(t) sin(2πfct) sin(2πfct) + 2xi(t) cos(2πfct) sin(2πfct). (7)

Using the trigonometric identities 2 cos(θ) cos(θ) = 1+cos(2θ), 2 sin(θ) sin(θ) = 1−cos(2θ) and
2 cos(θ) sin(θ) = sin(2θ), we get

ui(t) = xi(t) + xi(t) cos(4πfct) + xq(t) sin(4πfct), (8)

uq(t) = xq(t) − xq(t) cos(4πfct) + xi(t) sin(4πfct). (9)

After the high-frequency components of ui(t) and uq(t) are removed by the LPFs shown in
Figure 2, we obtain

x̂i(t) = xi(t), (10)

x̂q(t) = xq(t), (11)

as desired.

a) Plots and PSDs. Modify the Matlab .m file you wrote for Section 1.1 in order to simulate
the scheme of Figure 2. You can generate xi(t) and xq(t) in a similar manner to how you
generated x(t) in Section 1.1a, by using the commands

randn(’seed’,1);

x w = randn(size(t));

x i = filter2(B,x w);

x w = randn(size(t));
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x q = filter2(B,x w);

Note that by regenerating xw(t) before obtaining xq(t), we ensure that it differs to xi(t).

You can obtain y(t) by using the commands
c i=cos(2*pi*f c*t);

c q=sin(2*pi*f c*t);

y=c i.*x i+c q.*x q;

You can obtain ui(t) and uq(t) in the same way that you obtained u(t) in Section 1.1c. These
signals can be filtered using the same LPF as the one you used in Section 1.1c.

Generate the PSD of y(t) in the same way that you did in Section 1.1b. Also, plot the first
1000 samples of xi(t) and x̂i(t) in the same figure, like you did in Section 1.1c. Do the same for
xq(t) and x̂q(t). Make sure that you are convinced that QAM allows the transmission of two
signals at the same time.

Include the PSD and one of the new plots in your write-up. With consideration
of the PSD, explain how the bandwidth of y(t) compares to that obtained for
the DSBSC scheme in Section 1.1b? This may seem surprising since the DSBSC
scheme only transmits one signal, whereas the QAM scheme transmits two. If not
in bandwidth, how does the QAM scheme ‘pay’ for the additional signal?

1.3 Complex Quadrature Amplitude Modulation

Note that just like how our signal comprises the two components xi(t) and xq(t), there are
two components to a complex number, namely the real part and the imaginary part. Complex
numbers can therefore conveniently represent the two parts of our signal, according to

x(t) = xi(t) + jxq(t), (12)

where j =
√
−1. In this case, the schematic of Figure 2 is transformed into that of Figure 3.

y(t) × u(t)
LPF

x̂(t)

Demodulator

×x(t)

Modulator

Re(·)

e−j2πfct 2ej2πfct

Figure 3: Complex QAM modulation and demodulation.

As shown in Figure 3

y(t) = Re
[

x(t)e−j2πfct
]

, (13)

where Re[a + jb] = a.
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a) Calculations. Use the following identities to determine expressions for y(t), u(t) and x̂(t).

j2 = −1, (14)

e−jθ = cos(θ) − j sin(θ), (15)

ejθ = cos(θ) + j sin(θ), (16)

2 cos(θ) cos(θ) = 1 + cos(2θ), (17)

2 sin(θ) sin(θ) = 1 − cos(2θ), (18)

2 cos(θ) sin(θ) = sin(2θ). (19)

Provide your calculations in your write-up, showing where you have used each of
the identities provided above. Comment on how your expression for y(t) compares
to that provided in Equation 5 for the scheme of Figure 2. Comment on how your
expression for x̂(t) compares to that of Equation 12.

1.4 Additive White Gaussian Noise

So far, we’ve assumed that our channel does not adversely affect our transmitted signal y(t).
Let’s see how our analogue modulation scheme performs when the channel introduces some
Additive White Gaussian Noise (AWGN) n(t), as shown in Figure 4.

×x(t)

Modulator

Re(·)

e−j2πfct

+
ŷ(t) × u(t)

LPF
x̂(t)

Demodulator

2ej2πfct

y(t)

n(t)

Figure 4: Complex QAM modulation and demodulation in the presence of AWGN.

This noise n(t) is additive because it is added to the transmitted signal y(t). It is Gaussian
because it may be generated using a sequence of Gaussian distributed random variables, just
like how our signal xw(t) was generated in Section 1.1a. As described in Section 1.1a, sequences
of Gaussian distributed random variables have components at all frequencies. Therefore, our
noise n(t) is white.

a) Plots and PSDs. Modify your .m file from Section 1.2 in order to simulate the scheme
of Figure 4. Generate the noise n(t) using the commands

randn(’seed’,1);

n=0.01*randn(size(t));

Here, the multiplier of 0.01 results in some relatively low-power noise. Here are some other
commands to help you simulate the scheme of Figure 4

x=x i+j*x q;

yhat=real(x.*exp(-j*2*pi*f c*t))+n;

u=2*yhat.*exp(j*2*pi*f c*t);
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Compare plots of the transmitted and received signals using the commands
figure;

plot(t(1:1000),real(xhat(1:1000)),’-’, t(1:1000),real(x(1:1000)),’--’);

figure;

plot(t(1:1000),imag(xhat(1:1000)),’-’, t(1:1000),imag(x(1:1000)),’--’);

Also, generate PSDs for the two components of the received signal using the commands
figure;

pwelch(real(xhat));

figure;

pwelch(imag(xhat));

Include one of the plots and one of the PSDs in your write-up. Comment on
how the AWGN has affected the demodulated signals. Comment on how the PSD
compares to that obtained for x̂(t) in Section 1.1c. How has this PSD been affected
by your choice of the cut-off frequency for the LPF of Figure 4? Comment on how
this would influence your choice of cut-off frequency in the future.

2 Digital Modulation

2.1 4-ary Quadrature Amplitude Modulation

The previous section showed that analogue modulation schemes are susceptible to noise. In
this section, we’ll show that digital modulation schemes can achieve reliable communications
even in the presence of relatively severe noise. The difference between an analogue and a digital
modulation scheme is the type of signal they are used to convey. As we showed in Section 1,
analogue modulators transmit an analogue signal x(t). However, the analogue demodulator can
never be sure if a particular component of the demodulated signal x̂(t) is signal or noise. By
contrast, digital modulators transmit digital signals, such as a sequence of binary digits b[n].
Since a bit can only have a value of ‘0’ or ‘1’, the demodulator just has to choose from these
two values when recovering the sequence b̂[n]. While the demodulator can never be sure that
it has made the right choices, it will typically do a good job so long as the noise is not really
bad.

We can construct a digital modulation scheme by converting the digital signal b[n] into an
analogue signal x(t) and using the analogue modulation scheme of Figure 4. Once the demod-
ulated signal x̂(t) has been recovered, we just need to convert it back into a digital signal b̂[n].
Schematics for a Digital to Analogue Converter (DAC) and an Analogue to Digital Converter
(ADC) are provided in Figures 5 and 6.

Serial to
parallel

converter

4QAM
mapper

Root raised
cosine filter

b[n]
b1[n]

b2[n]
s[n] s(t) x(t)impulse

generator

Figure 5: Digital to analogue conversion using 4QAM.
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b̂1[n]

b̂2[n]
ŝ[n]ŝ(t)x̂(t)

sampler 4QAM
demapper

Parallel to
serial

converter

Figure 6: Analogue to digital conversion using 4QAM.

a) Bit mapping. Let’s consider a scheme that transmits bits at a rate of fb = 20 kbit/s.
Start by adding the following commands into the .m file you created in Section 1.4.

f b=20000;

bits=f b*T;

You can generate a random bit sequence b[n] using the commands
rand(’seed’,1);

b=round(rand(1,bits));

You may like to look up the rand and round functions in Matlab’s help facility to see how this
works.

Let’s use M = 4-ary Quadrature Amplitude Modulation (4QAM), like in Figures 5 and 6. This
transmits log2(M) = 2 bits at a time by combining them into a single 4QAM symbol. You can
determine the symbol rate fsymb, the total number of symbols and the number of samples per
symbol using the commands

bits per symbol=2;

f symb=f b/bits per symbol;

symbols=bits/bits per symbol;

samples per symbol=f s/f symb;

As shown in Figure 5, the first step in 4QAM modulation is to convert our serial sequence of
bits b[n] into two parallel sequences b1[n] and b2[n]. You can do this using the commands

b mat=reshape(b,bits per symbol,symbols);

b 1=b mat(1,:);

b 2=b mat(2,:);

Verify that this works by comparing the first 10 bits in b[n] (use the command b(1:10)) with
the first 5 bits in b1[n] and b2[n] (use the commands b 1(1:5) and b 2(1:5)). Notice that the
bits in b[n] having even indices go into one of the parallel bit sequences, while the bits with
odd indices go into the other.

Next, we need to map each pair of bits to a 4QAM symbol, in order to generate the symbol
sequence s[n], as shown in Figure 5. Like in the complex QAM scheme of Section 1.3, the
4QAM symbols are complex. You can do the mapping using the command

sn=a*(-2*(b 1-0.5)+j*-2*(b 2-0.5));

Here, you need to choose the value for a that results in an average symbol power of one. You
can check that the average symbol power is normalised in this way using the command

sum(abs(sn).∧2)/symbols

Output the first five values in your resultant symbol sequence s[n] using the command sn(1:5).
Make sure that you can see how the bit values in b1[n] and b2[n] relate to the corresponding
complex values in s[n]. The possible values of the 4QAM symbols in s[n] can be visualised
using the constellation diagram of Figure 7.

9



a−a

a

−a

Re(s[n])
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Figure 7: 4QAM constellation diagram.

The bit mapping we have used is called the Gray bit mapping. Table 1 would detail this bit
mapping, but it is incomplete.

b1[n] b2[n] s[n]

0 0
0 1
1 0
1 1

Table 1: 4QAM Gray bit mapping

Include the bit and symbol values that you observed in your write-up. Include a
table like Table 1 in your write-up and fill in the missing complex values of s[n]
by examining the provided Matlab code. Comment on how the distance between
the various pairs of constellation points in Figure 7 is related to how similar their
mapped bit values are. Comment on why this is beneficial. Derive an expression
for the value of a that correctly normalises the average symbol power and include
this in your write-up.

b) Impulse generation. As shown in Figure 5, the next step is to convert our sequence
of discrete 4QAM symbols s[n] into a continuous function of time s(t). We can do this by
generating impulses having the corresponding complex amplitudes, as shown in Figure 5. Since
our symbols are generated at a rate of fsymb = 104 symbols/s, each one has a duration of
10−4 s. Let’s generate our impulses at the midpoints of these durations. Remember that in our
simulation, we are using samples to model the various continuous functions of time. Hence, you
can generate s(t) by up-sampling s[n] by samples per symbol times. You can do this using
the command

st=upsample(sn*samples per symbol,samples per symbol,samples per symbol/2);
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Here, the third parameter ensures that the impulses occur at the midpoints of the symbol du-
rations.

Plot the real and imaginary parts of the first 1000 samples in s(t). Make sure that you can see
how these plots relate to the first five bits of b1[n] and b2[n], as well as the first five complex
values in s[n]. Also, generate the PSDs for the real and imaginary parts of s(t).

Include these plots and one of the PSDs in your write-up. With reference to your
PSD, comment on why it is necessary to apply a LPF to s(t) before modulating it
onto the channel.

c) Root raised cosine filtering. The root raised cosine filter of Figure 5 is a special type
of LPF that is particularly suited for digital modulation in the presence of AWGN. You can
generate a root raised cosine filter using the command

B rrcos=firrcos(10*samples per symbol,f symb/2,f symb,f s,’sqrt’);

Like in Section 1.1a, use the filter2 function to filter s(t) and generate the analogue signal
x(t).

Compare the real part of the signals s(t) and x(t) using the commands
figure;
plot(t(1:1000),real(x(1:1000)),’-’,

t(1:1000),real(st(1:1000))/samples per symbol,’--’);
Do the same for the imaginary part. Also, generate PSDs for the real and imaginary parts of
x(t).

Include these plots and one of the PSDs in your write-up. Comment on how the
signals s(t) and x(t) are related. What is the maximum frequency that is present
within the signal x(t)? How does this compare to the symbol rate fsymb?

d) Modulation and demodulation. Use the Matlab code you wrote for Section 1.4 to
simulate the transmission of your signal x(t). Compare the real and imaginary parts of x(t)
with those of x̂(t) using the commands provided in Section 1.4a. Confirm that these signals
are very similar and that they only differ because of the noise you introduced.

State the bandwidth of y(t) in your write-up.

e) Root raised cosine filtering 2. As shown in Figure 6, the first step in obtaining b̂[n]
from x̂(t) is to filter it. This will remove some of the noise that was not filtered out by the LPF
of Figure 4. You should use the same root raised cosine filter that you designed in Section 2.1c
and you should use the filter2 function again. Compare the real and imaginary parts of
the resultant signal ŝ(t) with those of s(t) by using commands similar to the one provided in
Section 2.1c.

As shown in Figures 5 and 6, the impulses of s(t) pass through two root raised cosine filters,
one in the transmitter and one in the receiver. Figure 8 shows the impulse response of this pair
of filters. In the absence of any channel noise, the signal ŝ(t) can be obtained by convolving

s(t) with the response shown in Figure 8. This convolution replaces each impulse in s(t)
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with a version of the impulse response shown in Figure 8 that has the corresponding complex
amplitude.
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Figure 8: Impulse response of a pair of root raised cosine filters.

Include your new plots in your write-up. Explain the features of Figure 8 which
show that the root raised cosine filters of Figures 5 and 6 facilitate (i) a low band-
width, (ii) a low filter order and (iii) no inter symbol interference.

f) Sampling and 4QAM demapping. Next, we need to sample ŝ(t) at the midpoints of
the symbol durations, as shown in Figure 6. These midpoints coincide with the impulses shown
in the plots you just generated. You can sample ŝ(t) using the command

snhat=sthat(upsample(ones(size(sn)),

samples per symbol,samples per symbol/2)==1);
Output the first five values in the resultant sequence ŝ[n] using a command similar to the one
suggested in Section 2.1a. Make sure that you can see how these five values are obtained from
ŝ(t) by comparing them with the plots you generated in Section 2.1e.

As shown in Figure 6 the next step is 4QAM demapping. This can be performed by seeing
where the samples in ŝ[n] occur within the constellation diagram of Figure 7. More specifically,
we need to decide which constellation point is the nearest to each sample. For 4QAM, we can
do this by seeing which side of the axes the samples are on. This can be achieved using the
commands

b 1hat=real(snhat)<0;

b 2hat=imag(snhat)<0;

Display the first five bits in the resultant sequences b̂1[n] and b̂2[n] using similar commands to
the ones suggested in Section 2.1a. Make sure you can see why these values have been selected
for these bits by considering the first five values in snhat.
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The final step of Figure 6 is parallel to serial conversion. You can achieve this using the
commands

b mathat=[b 1hat;b 2hat];

b hat=reshape(b mathat,1,bits);

Display the first ten bits in the resultant sequence b̂[n] using a similar command to the one
suggested in Section 2.1a.

Include the values of ŝ[n], b̂1[n], b̂2[n] and b̂[n] that you observed in your write-up.
Comment on how these values compare to the ones you observed in Section 2.1a.

g) Bit Error Ratio. We can assess how well our 4QAM modulation scheme has mitigated the
noise n(t) by comparing b[n] with b̂[n]. The similarity of these bit sequences may be quantified
using the Bit Error Ratio (BER), which is obtained using the command

ber=sum(b hat∼=b)/bits

In Section 1.4a, a multiplier of 0.01 was applied to the noise signal n(t). Gradually increase
this multiplier until at least one of the first ten bits in b̂[n] differs to the corresponding bit in
b[n].

Using your new noise multiplier, compare the real and imaginary parts of x(t) with those of
x̂(t) by invoking the commands provided in Section 1.4a. Also, compare the real and imaginary
parts of ŝ(t) with those of s(t) by using commands similar to the one provided in Section 2.1c.

Include the new plots in your write-up. Also provide the first five values of ŝ[n],
b̂1[n] and b̂2[n], as well as the first ten values of b̂[n]. Comment on why the observed
bit errors have occurred. State the BER that you obtained.

2.2 16-ary Quadrature Amplitude Modulation

In the 4QAM scheme of Section 2.1, we transmitted two bits at a time and achieved a bit rate
of fb = 20 kbit/s. However, we can achieve higher bit rates by transmitting more bits at a
time. In M = 16-ary Quadrature Amplitude Modulation (16QAM), we transmit log2(M) = 4
bits at a time, as shown in Figures 9 and 10.

Serial to
parallel

converter

Root raised
cosine filter

b[n] s[n] s(t) x(t)impulse
generator

16QAM
mapper

b4[n]

b1[n]

Figure 9: Digital to analogue conversion using 16QAM.

Compare Figures 9 and 10 with Figures 5 and 6. Notice that the only differences are in the
design of the serial to parallel converter, the bit mapper, the bit demapper and the parallel to
serial converter. In this section, you’ll need to write some Matlab code that will simulate each
of these components.

13



Root raised
cosine filter

b̂[n]ŝ[n]ŝ(t)x̂(t)
sampler 16QAM

demapper

Parallel to
serial

converter

b̂1[n]

b̂4[n]

Figure 10: Analogue to digital conversion using 16QAM.

a) Serial to parallel conversion. Modify the .m file you wrote in Section 2.1 to give a bit
rate of fb = 40 kbit/s. Also, modify this code to decompose the bit sequence b[n] into four
sequences b1[n], b2[n], b3[n] and b4[n], as shown in Figure 9. Output the first 20 bits in b[n], as
well as the first five bits in each of b1[n], b2[n], b3[n] and b4[n].

Include these values in your write-up and comment on how they are related. Also,
include any lines of Matlab code that you modified.

b) Bit mapping. The constellation diagram for 16QAM is provided in Figure 11. The
constellation points in this figure are labelled with the corresponding Gray-mapped bit values
of b1[n], b2[n], b3[n] and b4[n].

3aa 2a−a−2a−3a

a

2a

3a

−a

−2a

−3a

Re(s[n])

Im(s[n])

000000010011

0110 0111 0101 0100

1110 1111 1101 1100

1010 1011 1001 1000

0010{b1[n], b2[n], b3[n], b4[n]} =

Figure 11: 16QAM constellation diagram and Gray bit mapping.

Write some Matlab code to perform 16QAM bit mapping. There are a number of ways that
you could do this, so feel free to get creative! You’ll need to normalise the average symbol
power to one by selecting a value for the constant a of Figure 11. Note that this value will be
different to the one you used in 4QAM. Because the average symbol powers of both the 4QAM
and 16QAM schemes are normalised in this way, it is fair to compare them. Output the first
five complex values in the resultant symbol sequence s[n].

Include these values in your write-up and comment on how they are related to
the bit values you obtained in Section 2.2a. Also, include your Matlab code for
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performing 16QAM bit mapping. Comment on how the distance between the
various pairs of constellation points in Figure 11 is related to how similar their
mapped bit values are. Comment on why this is beneficial. Finally, include a
derivation of the constant a.

c) Modulation and demodulation. Use the Matlab code you wrote in Section 2.1 to
transmit s[n] and recover ŝ[n]. Output the first five complex values in ŝ[n].

Include these values in your write-up. Also, include plots and PSDs that correspond
to the ones you generated in Section 2.1. What is the maximum frequency that is
present within the signal x(t)? How does this compare to the symbol rate fsymb?
What is the bandwidth of the signal y(t)? How does this compare to the bandwidth
of the 4QAM scheme?

d) Bit demapping. Write some Matlab code to perform 16QAM bit demapping. Again,
there are a number of ways that you could do this. Display the first five bits in the resultant
sequences b̂1[n], b̂2[n], b̂3[n] and b̂4[n].

Include these values in your write-up and comment on how they relate to the first
five values in ŝ[n]. Also, include the Matlab code you wrote to perform 16QAM
demapping. Explain how your code decides what value each bit should have.

e) Parallel to serial conversion. Write some Matlab code to perform parallel to serial
conversion. Display the first 20 bits in the resultant sequence b̂[n].

Include these values in your write-up and comment on how they relate to the
sequences b̂1[n], b̂2[n], b̂3[n] and b̂4[n]. Also, include the Matlab code you wrote to
perform parallel to serial conversion. What BER do you obtain when you use the
same noise multiplier that you found in Section 2.1g? Your 16QAM scheme has the
same bandwidth and average transmit power as the 4QAM scheme, but it has the
advantage of a higher bit rate. What are the disadvantages of 16QAM compared
to 4QAM? Which of the bit sequences b̂1[n], b̂2[n], b̂3[n] and b̂4[n] do you think are
most susceptible to bit errors? Explain your reasoning.

Sheng Chen 07/10/2005
Rob Maunder 15/10/2009
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